Skip to main content

4D SPECT/CT Acquisition for 3D Dose Calculation and Dose Planning in 177Lu-Peptide Receptor Radionuclide Therapy: Applications for Clinical Routine

  • Conference paper
  • First Online:
Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

Molecular radiotherapy combines the potential of a specific tracer (vector) targeting tumor cells with local radiotoxicity. Designing a specific tumor-targeting/killing combination is a tailoring process. Radionuclides with imaging capacity serve best in the selection of the targeting molecule. The potential of targeted therapy with radiolabeled peptides has been reported in many conditions; peptide receptor radionuclide therapy (PRRT) is already part of Scandinavian guidelines for treating neuroendocrine tumors. Lu-177- and Y-90-labeled somatostatin analogs, including DOTATOC, DOTANOC, and DOTATATE, are most the commonly used and have turned out to be effective. For routine use, an efficient, rapid, and reliable dose calculation tool is needed. In this chapter we describe how serial pre- and posttherapeutic scans can be used for dose calculation and for predicting therapy doses. Our software for radionuclide dose calculation is a three-dimensional, voxel-based system. The 3D dose calculation requires coregistered SPECT image sets from several time points after infusion to reconstruct time-activity curves for each voxel. Image registration is done directly by SPECT image registration using the first time point as a target. From the time-activity curves, initial activity and total half-life maps are calculated to produce a cumulated activity map. The cumulated activity map is then convoluted with a voxel-dose kernel to obtain a 3D dose map. We performed dose calculations similarly for both therapeutic and preplanning images. Preplanning dose was extrapolated to predict therapy dose using the ratio of administered activities. Our 3D dose calculation results are also compared with those of OLINDA. Our preliminary results indicate that dose planning using pretherapeutic scanning can predict critical organ and tumor doses. In some cases, the dose planning prediction resulted in slight, and slightly dose-dependent, overestimation of final therapy dose. Real tumor dose was similar in both pretherapeutic and posttherapeutic scans using our software. The OLINDA software and our program gave similar normal organ doses, whereas tumor doses could be calculated in a more detailed manner using the 3D program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakker WH, Breeman WA, Kwekkeboom DJ et al (2006) Practical aspects of peptide receptor radionuclide therapy with [177Lu][DOTA0, Tyr3]octreotate. Q J Nucl Med Mol Imaging 50:265–271

    PubMed  CAS  Google Scholar 

  • Bodei L, Cremonesi M, Ferrari M et al (2008) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35:1847–1856

    Article  PubMed  CAS  Google Scholar 

  • Bodei L, Cremonesi M, Grana CM et al (2011) Peptide receptor radionuclide therapy with (177)Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging 38(12):2125–2135 epub Sept 3

    Article  PubMed  CAS  Google Scholar 

  • Cremonesi M, Ferrari M, Bodei L et al (2006) Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 47:1467–1475

    PubMed  CAS  Google Scholar 

  • Cremonesi M, Ferrari M, Di Dia A et al (2011) Recent issues on dosimetry and radiobiology for peptide receptor radionuclide therapy. Q J Nucl Med Mol Imaging 55:155–167

    PubMed  CAS  Google Scholar 

  • De Jong M, Valkema R, Van Gameren A et al (2004) Inhomogeneous localization of radioactivity in the human kidney after injection of [(111)In-DTPA]octreotide. J Nucl Med 45:1168–1171

    PubMed  Google Scholar 

  • Forrer F, Krenning EP, Kooij PP et al (2009) Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0), Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging 36:1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Gabriel M, Andergassen U, Putzer D et al (2010) Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 54:92–9

    PubMed  CAS  Google Scholar 

  • Heiskanen T, Heiskanen T, Kairemo K (2009) Development of a PBPK model for monoclonal antibodies and simulation of human and mice PBPK of a radiolabelled monoclonal antibody. Curr Pharm Des 15:988–1007

    Article  PubMed  CAS  Google Scholar 

  • Kairemo K, Lubberink M, Garske U et al (2002) Dosimetry of repeated Y-90-octreotide therapy of somatostatin expressing tumours. World J Nucl Med 1:S134–5

    Google Scholar 

  • Kangasmäki A, Kiljunen T, Pyyry J et al (2012) A simple individualized 3D dose calculation for radionuclide therapy—applied in 177Lu-DOTA receiving patients. (Submitted)

    Google Scholar 

  • Konijnenberg M, Bijster M, Krenning EP et al (2004) A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu. J Nucl Med 45:1260–9

    PubMed  CAS  Google Scholar 

  • Konijnenberg M, Melis M, Valkema R et al (2007) Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy. J Nucl Med 48:134–142

    PubMed  CAS  Google Scholar 

  • Kwekkeboom DJ, Teunissen JJ, Bakker WH et al (2005) Radiolabeled somatostatin analog 177Lu-DOTA0, Tyr3) octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 23:2754–2762

    Article  PubMed  CAS  Google Scholar 

  • Lubberink M, Garske U, Sandström M et al (2002) Dosimetry of repeated Y-90-SMT 487 (Octreother) therapy of somatostatin expressing tumours using Y-90-bremsstrahlung and In-111-octreotide measurements. Eur J Nucl Med 29:S358

    Google Scholar 

  • Melis M, Krenning EP, Bernard BF et al (2005) Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging 32:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Pauwels S, Barone R, Walrand S et al (2005) Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):92S–8S

    PubMed  CAS  Google Scholar 

  • Seregni E, Maccauro M, Coliva A et al (2010) Treatment with tandem [(90)Y]DOTA-TATE and [(177)Lu] DOTA-TATE of neuroendocrine tumors refractory to conventional therapy: preliminary results. Q J Nucl Med Mol Imaging 54:84–91

    PubMed  CAS  Google Scholar 

  • Siegel JA, Stabin MG, Sharkey RM (2010) Renal dosimetry in peptide radionuclide receptor therapy. Cancer Biother Radiopharm 25:581–8

    Article  PubMed  CAS  Google Scholar 

  • Tiensuu Janson E, Sorbye H, Welin S et al (2010) Nordic guidelines 2010 for diagnosis and treatment of gastroenteropancreatic neuroendocrine tumors. Acta Oncol 49:740–756

    Article  Google Scholar 

  • van Eerd JE, Vegt E, Wetzels JF et al (2006) Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. J Nucl Med 47:528–533

    PubMed  Google Scholar 

  • Vegt E, Wetzels JF, Russel FG et al (2006) Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med 47:432–6

    PubMed  CAS  Google Scholar 

  • Wehrmann C, Senftleben S, Zachert C et al (2007) Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 22:406–416

    Article  PubMed  CAS  Google Scholar 

  • Wessels BW, Konijnenberg MW, Dale RG et al (2008) MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response–implications for radionuclide therapy. J Nucl Med 49:1884–1899

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalevi Kairemo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kairemo, K., Kangasmäki, A. (2013). 4D SPECT/CT Acquisition for 3D Dose Calculation and Dose Planning in 177Lu-Peptide Receptor Radionuclide Therapy: Applications for Clinical Routine. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics