Skip to main content

Personalized Image-Based Radiation Dosimetry for Routine Clinical Use in Peptide Receptor Radionuclide Therapy: Pretherapy Experience

  • Conference paper
  • First Online:
Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

Patient-specific dose calculations are not routinely performed for targeted radionuclide therapy procedures, partly because they are time consuming and challenging to perform. However, it is becoming widely recognized that a personalized dosimetry approach can help plan treatment and improve understanding of the dose–response relationship. In this chapter, we review the procedures and essential elements of an accurate internal dose calculation and propose a simplified approach that is aimed to be practical for use in a busy nuclear medicine department.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosini V, Tomassetti P, Franchi R, Fanti S (2010) Imaging of NETs with PET radiopharmaceuti cals. Q J Nucl Med Mol Imaging 54:16–23

    PubMed  CAS  Google Scholar 

  • Assie K, Dieudonne A, Gardin I, Buvat I, Tilly H, Vera P (2008) Comparison between 2D and 3D dosimetry protocols in 90Y-ibritumomab tiuxetan radioimmunotherapy of patients with non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 23:53–64

    Article  PubMed  Google Scholar 

  • Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ (2011) Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 11:56–66

    Article  PubMed  Google Scholar 

  • Biehl KJ, Kong F, Dehdashti F et al (2006) 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 47:1808–1812

    PubMed  Google Scholar 

  • Bodei L, Cremonesi M, Ferrari M et al (2008) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35:1847–1856

    Article  PubMed  CAS  Google Scholar 

  • Bolch WE, Bouchet LG, Robertson JS et al (1999) MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level. J Nucl Med 40:11S–36S

    PubMed  CAS  Google Scholar 

  • Bombardieri E, Coliva A, Maccauro M et al (2010) Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging 54:3–15

    PubMed  CAS  Google Scholar 

  • Brans B, Bodei L, Giammarile F et al (2007) Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 34:772–786

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury FU, Scarsbrook AF (2008) The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol 63:241–251

    Article  PubMed  CAS  Google Scholar 

  • Cremonesi M, Botta F, Di Dia A et al (2010) Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging 54:37–51

    PubMed  CAS  Google Scholar 

  • Daisne J, Sibomana M, Bol A, Doumont T, Lonneux M, GrĂ©goire V (2003) Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 69:247–250

    Article  PubMed  Google Scholar 

  • Dale RG (1996) Dose-rate effects in targeted radiotherapy. Phys Med Biol 41:1871–1884

    Article  PubMed  CAS  Google Scholar 

  • Delpon G, Ferrer L, Lisbona A, Bardies M (2002) Correction of count losses due to deadtime on a DST-XLi (SmVi-GE) camera during dosimetric studies in patients injected with iodine-131. Phys Med Biol 47:N79–N90

    Article  PubMed  CAS  Google Scholar 

  • Dewaraja YK, Ljungberg M, Fessler JA (2006) 3-D Monte carlo-based scatter compensation in quantitative I-131 SPECT reconstruction. IEEE Trans Nucl Sci 53:181

    Article  PubMed  Google Scholar 

  • Dewaraja YK, Schipper MJ, Roberson PL et al (2010) 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med 51:1155–1162

    Article  PubMed  Google Scholar 

  • Du Y, Tsui BM, Frey EC (2006) Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol 51:1269–1282

    Article  PubMed  Google Scholar 

  • Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  PubMed  CAS  Google Scholar 

  • Erdi YE, Wessels BW, Loew MH, Erdi AK (1995) Threshold estimation in single photon emission computed tomography and planar imaging for clinical radioimmunotherapy. Cancer Res 55:5823s–5826s

    PubMed  CAS  Google Scholar 

  • Erdi YE, Mawlawi O, Larson SM et al (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509

    Article  PubMed  CAS  Google Scholar 

  • Fisher DR, Shen S, Meredith RF (2009) MIRD Dose estimate report no. 20: radiation absorbed-dose estimates for 111In- and 90Y-Ibritumomab Tiuxetan. J Nucl Med 50:644–652

    Article  PubMed  CAS  Google Scholar 

  • Fleming JS, Alaamer AS (1998) A rule based method for context sensitive threshold segmentation in SPECT using simulation. Phys Med Biol Med 43:2309

    Article  CAS  Google Scholar 

  • Forrer F, Krenning EP, Kooij PP et al (2009) Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0), Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging 36:1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Gardin I, Bouchet LG, Assie K et al (2003) Voxeldose: a computer program for 3-D dose calculation in therapeutic nuclear medicine. Cancer Biother Radiopharm 18:109–115

    Article  PubMed  Google Scholar 

  • Garkavij M, Nickel M, Sjogreen-Gleisner K et al (2010) 177Lu-[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer 116:1084–1092

    Article  PubMed  CAS  Google Scholar 

  • Glatting G, Landmann M, Kull T et al (2005) Internal radionuclide therapy: the ULMDOS software for treatment planning. Med Phys 32:2399–2405

    Article  PubMed  Google Scholar 

  • Grimes J, Celler A, Birkenfeld B et al (2011) Patient-Specific Radiation Dosimetry of 99mTc-HYNIC-Tyr3-Octreotide in Neuroendocrine Tumors. J Nucl Med 52:1474–1481

    Article  PubMed  CAS  Google Scholar 

  • He B, Du Y, Song X, Segars WP, Frey EC (2005) A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT. Phys Med Biol 50:4169–4185

    Article  PubMed  CAS  Google Scholar 

  • He B, Wahl RL, Du Y et al (2008) Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning—Monte Carlo simulation studies. IEEE Trans Med Imaging 27:521–530

    Article  PubMed  CAS  Google Scholar 

  • He B, Wahl RL, Sgouros G, Du Y, Jacene H, Kasecamp WR (2009) Comparison of organ residence time estimation methods for radioimmunotherapy dosimetry and treatment planning-patient studies. Med Phys 36:1595–1601

    Article  PubMed  Google Scholar 

  • Hobbs RF, Baechler S, Senthamizhchelvan S et al (2010) A gamma camera count rate saturation correction method for whole-body planar imaging. Phys Med Biol 55:817–831

    Article  PubMed  CAS  Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Krenning EP, van Essen M, Kam BL, Teunissen JJ, Kwekkeboom DJ (2011) Quality of Life in 265 Patients with Gastroenteropancreatic or Bronchial Neuroendocrine Tumors Treated with [177Lu-DOTA0, Tyr3]Octreotate. J Nucl Med 52:1361–1368

    Article  PubMed  CAS  Google Scholar 

  • Koral KF, Zasadny KR, Kessler ML et al (1994) CT-SPECT Fusion plus conjugate views for determining dosimetry in lodine-131-Monoclonal antibody therapy of lymphoma patients. J Nucl Med 35:1714–1720

    PubMed  CAS  Google Scholar 

  • Koral KF, Zasadny KR, Ackermann RJ, Ficaro EP (1998) Deadtime correction for two multihead Anger cameras in 131I dual-energy-window-acquisition mode. Med Phys 25:85–91

    Article  PubMed  CAS  Google Scholar 

  • Koral KF, Dewaraja Y, Li J et al (2000) Initial results for hybrid SPECT-conjugate-view tumor dosimetry in 131I-Anti-B1 antibody therapy of previously untreated patients with Lymphoma. J Nucl Med 41:1579–1586

    PubMed  CAS  Google Scholar 

  • Kwekkeboom DJ, de Herder WW, Kam BL et al (2008) Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26:2124–2130

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg M, Sjogreen-Gleisner K (2011) The accuracy of absorbed dose estimates in tumours determined by quantitative SPECT: a Monte Carlo study. Acta Oncol 50:981–989

    Article  PubMed  Google Scholar 

  • Loudos G, Tsougos I, Boukis S et al (2009) A radionuclide dosimetry toolkit based on material-specific Monte Carlo dose kernels. Nucl Med Commun 30:504–512

    Article  PubMed  Google Scholar 

  • Matthay KK, Panina C, Huberty J et al (2001) Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with 131I-MIBG. J Nucl Med 42:1713–1721

    PubMed  CAS  Google Scholar 

  • Minarik D, Sjogreen-Gleisner K, Linden O et al (2010) 90Y Bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med 51:1974–1978

    Article  PubMed  Google Scholar 

  • Mut F, Glickman S, Marciano D, Hawkins RA (1988) Optimum processing protocols for volume determination of the liver and spleen from SPECT imaging with technetium-99m sulfur colloid. J Nucl Med 29:1768–1775

    PubMed  CAS  Google Scholar 

  • Nicolas G, Giovacchini G, Muller-Brand J, Forrer F (2011) Targeted radiotherapy with radiolabeled somatostatin analogs. Endocrinol Metab Clin North Am 40:187–204, ix–x

    Google Scholar 

  • O’Donoghue JA (1999) Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med 40:1337–1341

    PubMed  Google Scholar 

  • Pauwels S, Barone R, Walrand S et al (2005) Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):92S–98S

    PubMed  CAS  Google Scholar 

  • Rajendran JG, Fisher DR, Gopal AK, Durack LD, Press OW, Eary JF (2004) High-dose 131I-Tositumomab (Anti-CD20) radioimmunotherapy for Non-Hodgkin’s lymphoma: adjusting radiation absorbed dose to actual organ volumes. J Nucl Med 45:1059–1064

    PubMed  CAS  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    Article  PubMed  Google Scholar 

  • Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A (2008) Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 53:4595

    Article  PubMed  CAS  Google Scholar 

  • Shcherbinin S, Celler A (2011) Assessment of the severity of partial volume effects and the performance of two template-based correction methods in a SPECT/CT phantom experiment. Phys Med Biol 56(16):5355–5371

    Article  PubMed  CAS  Google Scholar 

  • Shcherbinin S, Piwowarska-Bilska H, Grimes J et al (2011) Quantitative SPECT reconstructions for combined Lu-177/Y-90 radionuclide therapy: phantom experiments [abstract]. J Nucl Med 52(Suppl 1):1745

    Google Scholar 

  • Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ (1994) Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 35:1381–1389

    PubMed  CAS  Google Scholar 

  • Siegel JA, Thomas SR, Stubbs JB et al (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    PubMed  CAS  Google Scholar 

  • Siegel JA (2005) Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. Cancer Biother Radiopharm 20:126–140

    Article  PubMed  CAS  Google Scholar 

  • Stabin MG (2003) Developments in the internal dosimetry of radiopharmaceuticals. Radiat Prot Dosimetry 105:575–580

    Article  PubMed  CAS  Google Scholar 

  • Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  • Stabin MG, Sharkey RM, Siegel JA (2011) RADAR commentary: evolution and current status of dosimetry in nuclear medicine. J Nucl Med 52:1156–1161

    Article  PubMed  Google Scholar 

  • Strigari L, Menghi E, D’Andrea M, Benassi M (2006) Monte Carlo dose voxel kernel calculations of beta-emitting and Auger-emitting radionuclides for internal dosimetry: a comparison between EGSnrcMP and EGS4. Med Phys 33:3383–3389

    Article  PubMed  CAS  Google Scholar 

  • van Essen M, Krenning EP, Kam BL, de Jong M, Valkema R, Kwekkeboom DJ (2009) Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol 5:382–393

    Article  PubMed  Google Scholar 

  • Vandervoort E, Celler A, Wells G, Blinder S, Dixon K, Pang Y (2005) Implementation of an analytically based scatter correction in SPECT reconstructions. IEEE Trans Nucl Sci 52:645–653

    Article  Google Scholar 

  • Visser E, Postema E, Boerman O, Visschers J, Oyen W, Corstens F (2007) Software package for integrated data processing for internal dose assessment in nuclear medicine (SPRIND). Eur J Nucl Med Mol Imaging 34:413–421

    Article  PubMed  Google Scholar 

  • Wehrmann C, Senftleben S, Zachert C, Muller D, Baum RP (2007) Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 22:406–416

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, DeNardo GL, Meredith RF (2008) Targeted radionuclide therapy. Med Phys 35:3062–3068

    Article  PubMed  CAS  Google Scholar 

  • Wiseman GA, Kornmehl E, Leigh B et al (2003) Radiation dosimetry results and safety correlations from 90Y-Ibritumomab Tiuxetan Radioimmunotherapy for relapsed or refractory Non-Hodgkin’s Lymphoma: combined data from 4 clinical trials. J Nucl Med 44:465–474

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozena Birkenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Celler, A., Grimes, J., Shcherbinin, S., Piwowarska-Bilska, H., Birkenfeld, B. (2013). Personalized Image-Based Radiation Dosimetry for Routine Clinical Use in Peptide Receptor Radionuclide Therapy: Pretherapy Experience. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics