Skip to main content

A Novel 68Ga-Labeled Pteroic Acid-Based PET Tracer for Tumor Imaging via the Folate Receptor

  • Conference paper
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

The folate receptor (FR) is a very attractive target in oncological imaging as it is overexpressed by a variety of cancer types, whereas the expression in healthy tissue is very limited. The synthesis of regioisomeric pure folic acid derivatives normally requires a regioselective approach and does not allow the use of native folic acid (FA). As the pharmacophore of FA is assumed to be pteroic acid, its use without the glutamic acid moiety may enable the possibility to considerably simplify the synthesis of a positron emission tomography (PET) tracer for FR imaging. In this work, DO3A-EA-Pte was successfully synthesized and labeled with 68Ga. It is stable for up to 3 h in PBS and against transchelation by transferrin. It also displays a lipophilicity that allows the assumption that it will show favorable in vivo characteristics for FR imaging via PET.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antony AC (1992) The biological chemistry of folate receptors. Blood 79:2807–2820

    PubMed  CAS  Google Scholar 

  • Duimstra JA, Femia FJ, Meade TJ (2005) A gadolinium chelate for detection of β-glucuronidase: a self-immolative approach. J Am Chem Soc 127:12847–12855

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Xie F, Zhu M et al (2011) The synthesis of pteroyl-lys conjugates and its application as technetium-99m labeled radiotracer for folate receptor-positive tumor targeting. Bioorg Med Chem Lett 21:2025–2029

    Article  PubMed  CAS  Google Scholar 

  • Kamen BA, Capdevila A (1986) Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci USA 83:5983–5987

    Article  PubMed  CAS  Google Scholar 

  • Ke C-Y, Mathias CJ, Green MA (2005) Targeting the tumor-associated folate receptor with an 111In−DTPA conjugate of pteroic acid. J Am Chem Soc 127:7421–7426

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6:44–51

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP, Parker MA, Vlahov IR et al (2002) Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjugate Chem 13:1200–1210

    Article  CAS  Google Scholar 

  • Leamon C, You F, Santhapuram H et al (2009) Properties influencing the relative binding affinity of pteroate derivatives and drug conjugates thereof to the folate receptor. Pharm Res 26:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Mathias CJ, Wang S, Waters DJ et al (1998) Indium-111-DTPA-folate as a potential folate receptor-targeted radiopharmaceutical. J Nucl Med 39:1579–1585

    PubMed  CAS  Google Scholar 

  • Müller C, Dumas C, Hoffmann U et al (2004) Organometallic 99mTc-technetium(I)- and Re-rhenium(I)-folate derivatives for potential use in nuclear medicine. J Organomet Chem 689:4712–4721

    Article  Google Scholar 

  • Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443

    Google Scholar 

  • Ross TL, Honer M, Lam PYH et al (2008) Fluorine-18 click radiosynthesis and preclinical evaluation of a new 18F-labeled folic acid derivative. Bioconjugate Chem 19:2462–2470

    Article  CAS  Google Scholar 

  • Toffoli G, Cernigoi C, Russo A et al (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74:193–198

    Article  PubMed  CAS  Google Scholar 

  • Weitman SD, Weinberg AG, Coney LR et al (1992) Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 52:6708–6711

    PubMed  CAS  Google Scholar 

  • Zhernosekov KP, Filosofov DV, Baum RP et al (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Merck and Cie, Schaffhausen, Switzerland for providing us with the protected pteroic acid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berit Kühle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kühle, B., Müller, C., Ross, T.L. (2013). A Novel 68Ga-Labeled Pteroic Acid-Based PET Tracer for Tumor Imaging via the Folate Receptor. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics