Skip to main content

68Ga-Radiopharmaceuticals for PET Imaging of Infection and Inflammation

  • Conference paper
  • First Online:
Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

Infection imaging has been challenging over the past four decades, which provided an excellent playing field for researchers working in this area, and till date the quest continues to find an ideal imaging agent. Labelled leukocytes were first developed in the 1970s for imaging infection lesions such as osteomyelitis, cellulitis, diabetic foot, Crohn’s disease, inflammatory bowel disease, fever of unknown origin, etc. Subsequently labelled antibiotics such as 99mTc-labelled ciprofloxacin have emerged for directly identifying live bacterial infections. From the early 1970s through the mid-1980s, 67Ga-Citrate was the prime radionuclide for imaging of inflammation and infection of musculoskeletal origin. Although 68Ga-PET was described in 1960s for tumour imaging, recent reports described 68Ga-Citrate and 68Ga-transferrin as possible agents for PET-imaging of infection due to successful application of 67Ga-Citrate SPECT in the past, despite its limitations. It is important to establish a faster imaging method for 68Ga, as its half-life is 68 min compared to 78.3 hrs for 67Ga. Preparation of 68Ga-Citrate and 68Ga-transferrin is described, with very high yield and high radiochemical purity (RCP), which is ideally suited for routine clinical studies. Biodistribution of 68Ga-Citrate-PET images were characterised with high blood pool, high liver and bone (growth plate) uptake with low soft-tissue activity. 68Ga-Citrate or 68Ga-transferrin was able to detect infected lesions in rats within 5–10 min post injection but a focal intense uptake at the lesion (SUVmax) was visualized only at 30 min, which increased for up to 6 hrs post injection with concomitant decrease in the cardiac blood pool activity. The liver and bowel activity decreased after 90 min then stabilised. In the patient studies, infection lesions were detected within 30 min post injection of 68Ga-Citrate. Cardiac blood pool and liver activities decreased during the period of study. Interestingly, there was persistent high vascular activity in the thigh region. One of the major limitations of 67Ga-Citrate SPECT is the delayed post injection waiting time of 48 hrs, in contrast to 60 min post injection waiting with 68Ga-Citrate. The distinct difference in imaging time is intriguing, although there is no chemical difference between 67Ga-Citrate and 68Ga-Citrate, except for the radiolabel. No literature is available on early imaging times using 67Ga-SPECT. When compared 68Ga/67Ga-Citrate images at 60 min post injection in normal rats, 68Ga-PET showed better images with low background activity than 67Ga-SPECT agent. This may be due to short half-life of 68Ga (68 min), as it would have decayed one half-life at 60 min post-imaging time, compared to the SPECT agent (67Ga), which would require 76 hrs to undergo one half-life. Therefore, the visual difference in background can be attributed to the difference in the half-lives of these two agents. Similarly, uptake of 68Ga by liver, cardiac blood pool activity is much lower than 67Ga at 60 min post injection period, may be attributed to the faster decay of 68Ga than 67Ga. High background activity of 68Ga-Citrate in the thorax and upper abdomen at 60 min post-injection may interfere with detecting lesions in these regions; therefore, 68Ga-PET is more suitable for imaging lesions in the lower abdomen and the extremities. The short half-life of 68Ga (68 min) may be advantageous from low dosimetry to the patients, but disadvantageous for longer periods of study. Since 68Ga-Citrate was capable of detecting infection within 60 min, the need for imaging for longer periods may not be warranted. The functional imaging was not limited to diagnosing infection but it could be extended to surgical planning and antibiotic therapy monitoring of osteomyelitis and in distinguishing prosthetic infection from loosening of prosthesis. 18F-FDG is sensitive but has the limitation of giving false positive results in patients with bone prosthesis, even if there is no infection or mobilisation. But the available literature clearly indicated 68Ga-Citrate was positive only in cases of infection. In summary, preliminary reports suggest 68Ga-Citrate PET/CT is useful in the diagnosis of suspected bone infections with reliable sensitivity, specificity, positive predictive value, negative predictive value and overall accuracy. Preliminary reports with 68Ga-Transferrin showed it is capable of detecting both Gram-positive Staphylococcus aureus (Staph A) and Gram-negative Proteus mirobilis. This is an incidental finding but gives an insight into the potential of this agent to detect more than one bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aardaneh K, van der Walt K (2006) Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator. J Radioanal Nucl Chem 268:25–32

    CAS  Google Scholar 

  • Aisen P, Listowsky I (1980) Iron transport and storage proteins. Annu Rev Biochem 49:357–393

    PubMed  CAS  Google Scholar 

  • Akhtar MS, Qaisar A, Irfanullah J et al (2005) Antimicrobial peptide 99mTc-ubiquicidin 29–41 as human infectionimaging agent: clinical trial. J Nucl Med 46:567–573

    PubMed  CAS  Google Scholar 

  • Allan RA, Sladen GE, Bassingham S et al (1993) Comparison of simultaneous 99mTc-HMPAO and 111In oxine labelled white cell scans in the assessment of inflammatory bowel disease. Eur J Nucl Med 20:195–200

    PubMed  CAS  Google Scholar 

  • Antunes P, Ginj M, Zhang H et al (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals. Eur J Nucl Med Mol Imaging 34:982–993

    PubMed  CAS  Google Scholar 

  • Arseneau JC, Aamodt R, Johnston GS et al (1974) Evidence for granutocytic incorporation of 67gallium in chronic granulocytic leukemia. J Lab Clin Med 83:496–503

    PubMed  CAS  Google Scholar 

  • Asti S et al (2008) Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC. Nucl Med Biol 35:721–724

    PubMed  CAS  Google Scholar 

  • Barron B, Hanna C, Passalaqua AM, Lamki L, Wegener WA, Goldenberg DM (1999) Rapid diagnostic imaging of acute, nonclassic appendicitis by leukoscintigraphy with sulesomab, a technetium 99 m-labeled antigranulocyte antibody Fab’ fragment. LeukoScan Appendicitis Clinical Trial Group. Surgery 125:288–296

    PubMed  CAS  Google Scholar 

  • Bailey S, Evans RW, Garratt RC et al (1988) Molecular structure of serum transferrin at 3.3 Å resolution. Biochemistry 27:5804–5812

    PubMed  CAS  Google Scholar 

  • Baum RP, Prasad V, Hommann M et al (2008) Receptor PET/CT imaging of neuroendocrine tumors. Recent Results Cancer Res 170:225–242

    PubMed  CAS  Google Scholar 

  • Baum RP, Prasad V et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med 51(6):892–897

    PubMed  Google Scholar 

  • Bernstein L (1998) Mechanisms of therapeutic activity for Gallium. Pharmacol Rev 50:665–682

    PubMed  CAS  Google Scholar 

  • Becker W, Repp R, Hansen HJ et al (1995) Binding characteristics and kinetics of a new Tc-99 m-antigranulocyte Fab’ fragment (Leukoscan TM). J Nucl Med 36(Suppl):208P

    Google Scholar 

  • Bitran J, Bekerman C, Weinstein R et al (1987) Patterns of gallium-67 scintigraphy in patients with acquired immunodeficiency syndrome and the AIDS related complex. J Nucl Med 28:1103–1106

    PubMed  CAS  Google Scholar 

  • Boerman OC, Dams ETM, Oyen WJG, Corstens FHM, Storm G (2001) Radiopharmaceuticals for scintigraphic imaging of infection and inflammations. Inflamm Res 50:55–64

    PubMed  CAS  Google Scholar 

  • Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF (2003) 67Ga scintigraphy: procedure guidelines for tumor imaging. Eur J Nucl Med Mol Imaging 30:BP125–BP131

    PubMed  Google Scholar 

  • Breeman WAP, de Jong M, de Blois E et al (2004) Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med 32:478–485

    Google Scholar 

  • Burleson R, Johnson M, Head H (1973) Scintigraphic demonstration of experimental abscesses with intravenous 67Ga-citrate and 67Ga labeled blood leukocytes. Ann Surg 178:446–451

    PubMed  CAS  Google Scholar 

  • Burleson RL, Johnson MC, Head H (1974) In vitro and in vivo labeling of rabbit blood leukocytes with 67Ga-citrate. J Nucl Med 15:98–101

    PubMed  CAS  Google Scholar 

  • Chianelli M, Mather SJ, Martin-Comin J, Signore A (1997) Radiopharmaceuticals for the study of inflammatory processes: a review. Nucl Med Commun 18:437–455

    PubMed  CAS  Google Scholar 

  • Conry BG, Papathanasiou ND, Prakash V et al (2010) Comparison of 68Ga-DOTATATE and 18F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 37:49–57

    PubMed  CAS  Google Scholar 

  • Coleman RE (2000) FDG imaging. Nucl Med Biol 27(7):689–690

    PubMed  CAS  Google Scholar 

  • de Winter F, Vogelaers D, Gemmel F, Dierckx RA (2002) Promising role of 18F-fluoro-D-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 21:247–257

    PubMed  Google Scholar 

  • Dimitrakopoulou-Strauss A, Hohenberger P, Haberkorn U, Macke HR, Eisenhut M (2007) 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumours: comparison with 18F-FDG. J Nucl Med 48:1245–1250

    PubMed  CAS  Google Scholar 

  • Edwards CL, Hayes RL (1969) Tumor scanning with 67Ga-citrate. J Nucl Med 10:103–105

    PubMed  CAS  Google Scholar 

  • Ehrhardt GJ, Welch MJ (1978) A new germanium-68/gallium-68 generator. J Nucl Med 19:925–929

    PubMed  CAS  Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355S:7–21

    Google Scholar 

  • El-Maghraby TA, Moustafa HM, Pauwels EK (2006) Nuclear medicine methods for evaluation of skeletal infection among other diagnostic modalities. Q J Nucl Med Mol Imaging 50:167–192

    PubMed  CAS  Google Scholar 

  • Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    PubMed  CAS  Google Scholar 

  • Gelrud LG, Arseneau JC, Milder MS et al (1974) The kinetic of 67-gallium incorporation into inflammatory lesions: experimental and clinical studies. J Lab Clin Med 85:489–495

    Google Scholar 

  • Gravius S, Gebhard M, Ackermann D et al (2010) Analysis of 18F-FDG uptake pattern in PET for diagnosis of aseptic loosening versus prosthesis infection after total knee arthroplasty: a prospective pilot study. Nuklearmedizin 49:115–123

    PubMed  Google Scholar 

  • Harris DC, Aisen P (1989) In: Loehr TM et al (ed) Iron carriers and iron proteins. VCH, Weinheim, pp 239–351

    Google Scholar 

  • Henkin RE (1978) Gallium-67 in the diagnosis of inflammatory disease. In: Hoffer PB, Bekerman C, Henkin RE (eds) Gallium-67 imaging. Wiley, New York, pp 65–92

    Google Scholar 

  • Henze M, Schuhmacher J, Hipp P et al (2001) PET imaging of somatostatin receptors using 68Ga-DOTA-D-Phel-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42:1053–1056

    PubMed  CAS  Google Scholar 

  • Hofmann M, Ma¨cke HR, Bo¨rner AR et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTA TOC: preliminary data. Eur J Nucl Med 28:1751–1757

    PubMed  CAS  Google Scholar 

  • Hopkins GB, Mende CW (1975) Gallium-67 and subphrenic abscesses—is delayed scintigraphy necessary? J Nucl Med 16:609–611

    PubMed  CAS  Google Scholar 

  • Hoffer P (1980) Gallium: mechanisms. J Nucl Med 21:282–285

    PubMed  CAS  Google Scholar 

  • Hughes DK (2003) Nuclear medicine and infection detection: the relative effectiveness of imaging with 111In-oxine–, 99mTc-HMPAO–, and 99mTc-stannous fluoride colloid-labeled leukocytes and with 67Ga-citrate. J Nucl Med Technol 31:196–201

    PubMed  CAS  Google Scholar 

  • Huebers HA, Finch CA (1987) The physiology of transferrin and transferring receptors. Physiol Rev 67:520–582

    PubMed  CAS  Google Scholar 

  • Ichiya Y, Kuwabara Y, Sasaki M et al (1996) FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med 10:185–191

    PubMed  CAS  Google Scholar 

  • Iqbal MS, Khan J, Irfanullah MA et al (2004) 99mTc-labeled antimicrobial peptide ubiquicidin (29–41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection. J Nucl Med 45:849–856

    PubMed  Google Scholar 

  • Ito Y, Okuyama S, Awano T, Takahashi K, Sato T (1971) Diagnostic evaluation of Ga-67 scanning of lung cancer and other diseases. Radiology 101:355–362

    PubMed  CAS  Google Scholar 

  • Jeong JM, Hong MK, Chang YS et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triaza-cyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49(5):830–836

    PubMed  CAS  Google Scholar 

  • Kelly MJ, Kalff V, Hicks RJ et al (1990) 111In-oxine labelled leukocyte scintigraphy in the detection and localization of active inflammation and sepsis. Med J Aust 152:352–357

    PubMed  CAS  Google Scholar 

  • Kopecky P, Mudrová B, Svoboda K (1973) The study of conditions for the preparation and utilization of 68Ge–68Ga generator. Int J Appl Radiat Isot 24:73–80

    CAS  Google Scholar 

  • Kopecky P, Mudrová B (1974) 68Ge–68Ga generator for the production of 68Ga in an ionic form. Int J Appl Radiat Isot 25:263–268

    CAS  Google Scholar 

  • Koort JK, Mäkinen TJ, Knuuti J, Jalava J, Aro HT (2004) Comparative 18F-FDG-PET imaging of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411

    PubMed  Google Scholar 

  • Kramer EL, Sanger JH, Garay SM et al (1989) Diagnostic implications of Ga-67 chest scan patterns in human immunodeficiency virus-seropositive patients. Radiology 170:671–676

    PubMed  CAS  Google Scholar 

  • Kumar V (2005) Radiolabeled white blood cells and direct targeting of micro-organisms for infection imaging. Q J Nucl Med Mol Imaging 49:325–338

    PubMed  CAS  Google Scholar 

  • Kumar V, Ali M, Angelides S et al (2007) Synthesis and characterisation of 99mTc-glucosamine and 99mTc-His-CP and evaluation of their utility in imaging inflammatory arthritis. J ANZ Nucl Med 38(3):10–13

    Google Scholar 

  • Kumar V, Boddeti DK, Evans SG, Roesch F, Howman-Giles R (2009) Is 68Ga-citrate a novel agent for PET-imaging of Staphylococcus aureus infection? Eur J Nucl Med Mol Imaging 36(Suppl 2):S194–S233

    Google Scholar 

  • Kumar V, Boddeti DK, Evans SG, Roesch F, Howman-Giles R (2011) Potential use of 68Ga-apo-transferrin as a PET imaging agent for detecting Staphylococcus aureus infection. Nucl Med Biol 38:393–398

    PubMed  CAS  Google Scholar 

  • Kumar V, Boddeti DK, Evans SG, Angelides S (2012) 68Ga-citrate-PET for diagnostic imaging of infection in rats and for intra abdominal infection in a patient. Current radiopharmaceuticals 5:71–75

    PubMed  CAS  Google Scholar 

  • Larson SM (1978) Mechanisms of localization of gallium-67 in tumors. Semin Nucl Med 8:193–203

    PubMed  CAS  Google Scholar 

  • Lavender JP, Lowe J, Baker JR et al (1971) Gallium-67 citrate scanning in neoplastic and inflammatory lesions. Br J Radiol 44:361–366

    PubMed  CAS  Google Scholar 

  • Lisbona R, Derbekyan V, Novales-Diaz J et al (1993) Gallium-67 scintigraphy in tuberculous and nontuberculousn infectious spondylitis. J Nucl Med 34:853–859

    PubMed  CAS  Google Scholar 

  • Littenberg RL, Taketa RM, Alazraki NP et al (1973) Gallium-67 for localization of septic lesions. Ann Intern Med 79:403–406

    PubMed  CAS  Google Scholar 

  • Lim Y, Shin SH, Lee SI, Kim IS, Rhec JH (1998) Iron-repressibility of siderophore and transferrin-binding protein Staphylococcus aureus. FEMS Microbiol Lett 163:19–24

    PubMed  CAS  Google Scholar 

  • Lupetti A, Welling MM, Mazzi U et al (2002) Technetium-99m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and aspergillus fumigatus infections. Eur J Nucl Med Mol Imaging 29:674–679

    PubMed  CAS  Google Scholar 

  • Lupetti A, Nibbering PH, Welling MM, Pauwels EK (2003) Radiopharmaceuticals: new antimicrobial agents. Trends Biotechnol 21:70–73

    PubMed  CAS  Google Scholar 

  • Maecke HR, Andre JP (2007) 68Ga-PET radiopharmacy: a generator-based alternative to 18F-radiopharmacy. In: Schubiger PA, Lehmann L, Friebe M (eds) PET chemistry, the driving force in molecular imaging. Springer, New York, pp 215–241

    Google Scholar 

  • Martinez JL, Delgado-Iribarren A, Baquero F (1990) Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev 75:45–56

    CAS  Google Scholar 

  • Makinen TJ, Lankinen P, Poyhonen T et al (2005) Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging 32:1259–1268

    PubMed  Google Scholar 

  • Ma LD, Frassica FJ, Bluemke DA, Fishman EK (1997) CT and MRI evaluation of musculoskeletal infection. Crit Rev Diagn Imaging 38:535–568

    PubMed  CAS  Google Scholar 

  • McAfee JG, Thakur ML (1976a) Survey of radioactive agents for in vitro labelling of phagocytic leukocytes I. Soluble agents. J Nucl Med 17:480–487

    PubMed  CAS  Google Scholar 

  • McAfee JG, Thakur ML (1976b) Survey of radioactive agents for in vitro labelling of phagocytic leukocytes II. Particles. J Nucl Med 17:488–492

    PubMed  CAS  Google Scholar 

  • Merkel KD, Brown ML, Fitzgerald RH Jr (1986) Sequential technetium-99m HMDP gallium-67 citrate imaging for the evaluation of infection in the painful prosthesis. J Nucl Med 27:1413–1417

    PubMed  CAS  Google Scholar 

  • Menon S, Wagner HN Jr, Tsan MF (1978) Studies on gallium-accumulation in inflammatory lesions II. Uptake by Staphylococcus aureus: concise communication. J Nucl Med 19:44–47

    PubMed  CAS  Google Scholar 

  • Mozley PD, Thakur ML, Alavi A et al (1999) Effects of a 99mTc-labeled murine immunoglobulin M antibody to CD15 antigens on human granulocyte membranes in healthy volunteers. J Nucl Med 40:2107–2114

    PubMed  CAS  Google Scholar 

  • Modic MT, Feiglin DH, Piraino DW et al (1985) Vertebral osteomyelitis: assessment using MR. Radiology 157:157–166

    PubMed  CAS  Google Scholar 

  • Moser E, Tatsch K, Kirsch C-M et al (1990) Value of 67gallium scintigraphy in primary diagnosis and follow-up of opportunistic pneumonia in patients with AIDS. Lung 168(suppl):692–703

    Google Scholar 

  • Nakao A, Fujii T, Sugimoto H et al (2006) Oncological problems in pancreatic cancer surgery. World J Gastroenterol 12:4466–4472

    PubMed  Google Scholar 

  • Nanni C et al (2010) 68Ga-Citrate PET/CT for Evaluating Patients with Infections of the Bone. Preliminary results. J Nucl Med 51(12):1932–1936

    PubMed  Google Scholar 

  • Palestro CJ, Swyer AJ, Kim CK, Goldsmith SJ (1991) Infected knee prosthesis: diagnosis with In-Ill-leukocyte, Tc-99m sulfur colloid, and Tc-99m MDP imaging. Radiology 179:645–648

    PubMed  CAS  Google Scholar 

  • Palestro CJ (1994) The current role of gallium imaging in infection. Semin Nucl Med 24:128–141

    PubMed  CAS  Google Scholar 

  • Palestero CJ (2003) Nuclear medicine, the painful prosthetic joint, and orthopaedic infection. J Nucl Med 44:927–929

    Google Scholar 

  • Peters AM (1994) The utility of 99mTc HMPAO-leukocytes for imaging infection. Semin Nucl Med 24:110–127

    PubMed  CAS  Google Scholar 

  • Petrik M, Haas H, Dobrozemsky G et al (2010) 68Ga-Siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med 51(4):639–645

    PubMed  CAS  Google Scholar 

  • Rinne J, Boddeti DK, Burchardt C, Kumar V, Angelides S, Roesch F (2010) Preparation of 68Ga-labelled glucosamine. Int Med J 40(Suppl 2):1–39 (Abstract)

    Google Scholar 

  • Rizzello A, Di Pierro D, Lodi F et al (2009) Synthesis and quality control of 68Ga citrate for routine clinical PET. Nucl Med Comm 30:542–545

    CAS  Google Scholar 

  • Riss PJ, Kroll C, Nagel V, Roesch F (2008) NODAPA-OH and NODAPA-(NCS)n: Synthesis, 68Ga-radiolabelling and in vitro characterisation of novel versatile bifunctional chelators for molecular imaging. Bioorg Med Chem Lett 18:5364–5367

    PubMed  CAS  Google Scholar 

  • Riss PJ, Burchrdt c, Roesch F (2011) A methodical 68Ga labeling study of DO2A-(butyl-L-tyrosine) 2 with cation-exchanger post-processed 68Ga: practical aspects of radiolabelling. Contrast Media Mol Imag 6:492–498

    CAS  Google Scholar 

  • Roesch F, Riss PJ (2010) The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem 10:1–35

    Google Scholar 

  • Rösch F, Filosofov DV (2010) Production, radiochemical processing and quality evaluation of Ge-68 suitable for production of a 68Ge/68Ga generator. In: IAEA-TEC-DOC radioisotopes and radiopharmaceuticals, series 2: production and processing of parent radionuclides for generators: 68Ga, 82Sr, 90Sr, 188W for nuclear medicine applications, Int Atomic Energy Agency, Vienna ISBN 978-92-0-101110-7

    Google Scholar 

  • Rösch F, Knapp FF (Russ) (2003) Radionuclide generators. In: Vértes A, Nagy S, Klencsár Z (eds) Handbook of nuclear chemistry. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    PubMed  Google Scholar 

  • Rypins EB, Kipper SL, Weiland F et al (2002) 99mTc anti-CD 15 monoclonal antibody (LeuTech) imaging improves diagnostic accuracy and clinical management in patients with equivocal presentation of appendicitis. Ann Surg 235:232–239

    PubMed  Google Scholar 

  • Saif MW, Cornfeld D, Modarresifar H, Ojha B (2008) FDG positron emission tomography CT (FDG-PET-CT) in the management of pancreatic cancer: initial experience in 12 patients. J Gastrointest Liver Dis 17:173–178

    Google Scholar 

  • Silberstein EB, Fernandez-Ulloa M, Hall J (1981) Are oral cathartics of value in optimizing the gallium scan? concise communication. J Nucl Med 22:424–427

    PubMed  CAS  Google Scholar 

  • Shulkin BL (1997) PET applications in pediatrics. Q J Nucl Med 41(4):281–291

    PubMed  CAS  Google Scholar 

  • Shongwe MS, Smith CA, Ainscough EW et al (1992) Anion binding by human lactoferrin: results from crystallographic and physicochemical studies. Biochemistry 31:4451–4458

    PubMed  CAS  Google Scholar 

  • Siaens R, Eijsink VG, Dierckx R, Slegers G (2004) 123I-Labeled chitinase as specific radioligand for in vivo detection of fungal infections in mice. J Nucl Med 45:1209–1216

    PubMed  CAS  Google Scholar 

  • Skehan SJ, White JF, Evans JW et al (2003) Mechanism of accumulation of 99mTc-sulesomab in inflammation. J Nucl Med 44:11–18

    PubMed  CAS  Google Scholar 

  • Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK (2000) Infection imaging using whole-body FDG-PET. Eur J Nucl Med 27:822–832

    PubMed  CAS  Google Scholar 

  • Sugawara Y, Gutowski TD, Fisher SJ et al (1999) Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, l-methionine, 67Ga-citrate, and 125I-HSA. Eur J Nucl Med 26:333–341

    PubMed  CAS  Google Scholar 

  • Tatsch K, Knesewitsch P, Matuschke A et al (1990) 67Ga-scintigraphy for evaluation of AIDS-related intestinal infections. Nucl Med Commun 11:649–655

    PubMed  CAS  Google Scholar 

  • Termaat MF, Raijmakers PG, Scholten HJ et al (2005) The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Jt Surg Am 87:2464–2471

    CAS  Google Scholar 

  • Thakur ML, Richard MD, White FW III (1988) Monoclonal antibodies as agents for selective radiolabeling of human neutrophils. J Nucl Med 29:1817–1825

    PubMed  CAS  Google Scholar 

  • Thakur ML, Marcus CS, Henneman P et al (1996) Imaging inflammatory diseases with neutrophil-specific technetium-99m-labeled monoclonal antibody anti-SSEA-1. J Nucl Med 37:1789–1795

    PubMed  CAS  Google Scholar 

  • Tsan MF (1985) Mechanism of gallium-67 accumulation in inflammatory lesions. J Nucl Med 26:88–92

    PubMed  CAS  Google Scholar 

  • Tulchinsky M, Peters AM (2005) Leukocyte receptor-binding radiopharmaceuticals for infection and inflammation scintigraphy. J Nucl Med 46:718–721

    PubMed  CAS  Google Scholar 

  • Tzen KY, Oster ZH, Wagner HN Jr, Tsan MF (1980) Role of iron-binding proteins and enhanced capillary permeability on the accumulation of gallium-67. J Nucl Med 21:31–35

    PubMed  CAS  Google Scholar 

  • Ujula T, Salomäki S, Autio A et al (2009) 68Ga-chloride PET reveals human pancreatic adenocarcinoma xenografts in rats—comparison with FDG. Mol Imaging Biol 12:259–268

    PubMed  Google Scholar 

  • van Eerd JE, Oyen WJ, Harris TD et al (2003) A bivalent leukotriene B(4) antagonist for scintigraphic imaging of infectious foci. J Nucl Med 44:1087–1091

    PubMed  Google Scholar 

  • Velikyan I et al (2004) Microwave-supported preparation of 68Ga bioconjugates with high specific radioactivity. Bioconjugate Chem 15:554–560

    CAS  Google Scholar 

  • Vinjamuri S, Hall AV, Solanki KK, Bomanji J, Siraj Q, O’Shaughnessy E et al (1996) Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet 347:233–235

    PubMed  CAS  Google Scholar 

  • Weber WA, Schwaiger M, Avril N (2000) Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol 27(7):683–687

    PubMed  CAS  Google Scholar 

  • Weiner R, Hoffer PB, Thakur ML (1981) Lactoferrin: its role as a 67Ga-binding protein in polymorphonuclear leukocytes. J Nucl Med 22:32–37

    PubMed  CAS  Google Scholar 

  • Welling MM, Paulusma-Annema A, Balter HS et al (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 27:292–301

    PubMed  CAS  Google Scholar 

  • Welling MM, Mongera S, Lupetti A et al (2002) Radiochemical and biological characteristics of 99mTc-UBI 29–41 for imaging of bacterial infections. Nucl Med Biol 29:413–422

    PubMed  CAS  Google Scholar 

  • Yang DJ, Kim CG, Schechter NR, Azhdarinia A et al (2003) Imaging with 99mTc-ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Radiology 226:465–473

    PubMed  Google Scholar 

  • Yang DJ, Yukihiro M, Podoloff DA et al (2004) Assessment of therapeutic tumor response using 99mTc-ethylenedicysteine-glucosamine. Cancer Biother Radiopharm 19:443–456

    PubMed  CAS  Google Scholar 

  • Zhernosekov KP, Filosofov DV, Baum RP et al (2007) Processing of generator produced 68Ga for medical application. J Nucl Med 48:1741–1748

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We express sincere thanks to several authors for allowing us to reproduce figures and information from their published articles as acknowledged in the respective sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, V., Boddeti, D.K. (2013). 68Ga-Radiopharmaceuticals for PET Imaging of Infection and Inflammation. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics