Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 853))

Abstract

We present a range of exact techniques within two-dimensional conformal field theory (CFT), using the Q-state Potts and the O(n) models as exploratory tools. Both are equivalent to models of oriented loops, which act as level lines of a height model. The height model can be treated via a geometrical Coulomb gas construction, giving access to exact bulk and boundary properties. We detail the derivation of critical exponents and relate their physical interpretation to properties of clusters and loops. The underlying Temperley-Lieb algebra is discussed, and we show how the various topological sectors should be combined to yield exact continuum limit partition functions. These give access to probabilistic results, in particular to crossing formulae in percolation. Finally, we discuss how these results can be extended to classes of new conformally invariant boundary conditions, in which the weights of boundary-touching loops are modified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This implies that the dual of \( M\left( G \right) \) is a quadrangulation \(\widehat{G}\), which is however different from the quadrangulation GG . See Fig. 4.1c. The Potts model admits yet another representation, namely as a height model—or RSOS model—on \(\widehat{G}\).

  2. 2.

    The same construction can be taken over for the O(n) loop model (4.18) on condition that the roots be located on the dual lattice, and by allowing for other obvious modifications.

  3. 3.

    We consider the scalar curvature in a generalised sense, so that delta function contributions may be located at the boundaries. Implicitly, we are just applying the Gauss-Bonnet theorem.

  4. 4.

    A similar effect could be obtained by adding a surface magnetic field, but here we do not wish to break the symmetry of the model [typically O(n) in applications to loop models].

  5. 5.

    This should not (as is sometimes seen in the literature) be confused with imposing fixed boundary conditions, which would rather correspond to an infinite symmetry-breaking field applied on the boundary (and is sometimes referred to as normal transition).

  6. 6.

    It makes sense to think of this in the radial quantisation, or transfer matrix, picture. The theories are initially considered on a semi-infinite cylinder (resp. a strip) with specified transverse boundary conditions (periodic, resp. non-periodic) and unspecified longitudinal boundary conditions. This gives access to the transfer matrix eigenvalues. To access the fine structure, such as amplitudes of the eigenvalues, one must impose periodic longitudinal boundary conditions and take the length of the cylinder (resp. strip) to be finite.

  7. 7.

    Technically speaking this is the mixed ordinary-special transition, but we have simplified the terminology according to the above remarks.

References

  1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  2. Baxter, R.J., Kelland, S.B., Wu, F.Y.: Equivalence of the Potts model or Whitney polynomial with an ice-type model. J. Phys. A, Math. Gen. 9, 397 (1975)

    Article  ADS  Google Scholar 

  3. Cardy, J.L.: Conformal invariance and surface critical behaviour. Nucl. Phys. B 240, 514 (1984)

    Article  ADS  Google Scholar 

  4. Cardy, J.L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Cardy, J.L.: Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 275, 200 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  6. Cardy, J.L.: The O(n) model on the annulus. J. Stat. Phys. 125, 1 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. den Nijs, M.: Extended scaling relations for the magnetic critical exponents of the Potts model. Phys. Rev. B 27, 1674 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. den Nijs, M.: Extended scaling relations for the chiral and cubic crossover exponents. J. Phys. A, Math. Gen. 17, 295 (1984)

    Article  Google Scholar 

  9. di Francesco, P., Saleur, H., Zuber, J.B.: Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models. J. Stat. Phys. 49, 57 (1987)

    Article  ADS  MATH  Google Scholar 

  10. di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field-Theory. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  11. Domany, E., Mukamel, D., Nienhuis, B., Schwimmer, A.: Duality relations and equivalences for models with O(n) and cubic symmetry. Nucl. Phys. B 190, 279 (1981)

    Article  ADS  Google Scholar 

  12. Dubail, J., Jacobsen, J.L., Saleur, H.: Conformal two-boundary loop model on the annulus. Nucl. Phys. B 813, 430 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Duplantier, B., Saleur, H.: Exact critical properties of two-dimensional dense self-avoiding walks. Nucl. Phys. B 290, 291 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  14. Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  15. Jacobsen, J.L.: Conformal field theory applied to loop models. In: Guttmann, A.J. (ed.) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol. 775, pp. 347–424. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Jacobsen, J.L., Kondev, J.: Field theory of compact polymers on the square lattice. Nucl. Phys. B 532, 635 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Jacobsen, J.L., Saleur, H.: Conformal boundary loop models. Nucl. Phys. B 788, 137 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Jacobsen, J.L., Saleur, H.: Combinatorial aspects of boundary loop models. J. Stat. Mech. P01021 (2008)

    Google Scholar 

  19. José, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217 (1977)

    Article  ADS  Google Scholar 

  20. Kasteleyn, P.W., Fortuin, C.M.: Phase transitions in lattice systems with random local properties. J. Phys. Soc. Jpn. 26(Suppl.), 11 (1969)

    ADS  Google Scholar 

  21. Kondev, J., Henley, C.L.: Four-coloring model on the square lattice: a critical ground state. Phys. Rev. B 52, 6628 (1995)

    Article  ADS  Google Scholar 

  22. Kondev, J.: Liouville field theory of fluctuating loops. Phys. Rev. Lett. 78, 4320 (1997)

    Article  ADS  Google Scholar 

  23. Martin, P.P., Saleur, H.: The blob algebra and the periodic Temperley-Lieb algebra. Lett. Math. Phys. 30, 189 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  24. Nienhuis, B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  25. Nienhuis, B.: Critical behaviour of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys. 34, 731 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Nienhuis, B.: Coulomb gas formulations of two-dimensional phase transitions. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 11. Academic Press, London (1987)

    Google Scholar 

  27. Nienhuis, B.: Exact methods in low-dimensional statistical physics and quantum computing. In: Jacobsen, J., et al. (eds.) Les Houches Summer School, Session LXXXIX. Oxford University Press, London (2009)

    Google Scholar 

  28. Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B 330, 523 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  29. Potts, R.B.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc. 48, 106 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Richard, J.-F., Jacobsen, J.L.: Character decomposition of Potts model partition functions, I: Cyclic geometry. Nucl. Phys. B 750, 250 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Saleur, H., Bauer, M.: On some relations between local height probabilities and conformal invariance. Nucl. Phys. B 320, 591 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  32. Temperley, H.N.V., Lieb, E.H.: Relations between the percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the percolation problem. Proc. R. Soc. Lond. A 322, 251 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Yung, C.M., Batchelor, M.T.: O(n) model on the honeycomb lattice via reflection matrices: Surface critical behaviour. Nucl. Phys. B 453, 552 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Lykke Jacobsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobsen, J.L. (2012). Loop Models and Boundary CFT. In: Henkel, M., Karevski, D. (eds) Conformal Invariance: an Introduction to Loops, Interfaces and Stochastic Loewner Evolution. Lecture Notes in Physics, vol 853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27934-8_4

Download citation

Publish with us

Policies and ethics