A Short Introduction to Critical Interfaces in 2D

  • Michel BauerEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 853)


These notes are meant as a gentle introduction to the concepts of Loewner chains, local growth, Stochastic Loewner Evolutions (SLE) and their relationships to Conformal Field Theories (CFT). These concepts have played an important role in physics and mathematics during the recent years. The first section describes two discrete examples, the exploration process and loop-erased random walks. It can be read almost without any prerequisites. The aim is to show that even for curves defined purely in geometrical terms, it is useful to have a statistical mechanics viewpoint where the measure on curves is derived from a measure on local degrees of freedom of some model. A third model, diffusion-limited aggregation (DLA) is also introduced. The second section introduces Loewner chains and their relevance for the description of growth processes. A prerequisite is a minimal knowledge of complex analysis. The third section contains the derivation of the relevance of SLE in the description of interfaces when two properties, conformal invariance and the domain Markov property, are assumed/proved. The prerequisites are some knowledge of complex analysis and probability theory. The last section outlines the relation with Conformal Field Theory. This relation is via martingales and singular vectors. Again, the reader is assumed to have some basic knowledge of complex analysis and probability theory, and some familiarity with CFT. The discussion is informal. There is little or no claim at originality. We try to give some intuition based on explicit examples.

Some physical applications are outlined.


Partition Function Continuum Limit Conformal Invariance Conformal Field Theory Exploration Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bass, R.F.: Probabilistic Techniques in Analysis. Springer, New York (1995) zbMATHGoogle Scholar
  2. 2.
    Bauer, M., Bernard, D.: SLEκ growth processes and conformal field theories. Phys. Lett. B 543, 135 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bauer, M., Bernard, D.: Conformal field theories of stochastic Loewner evolutions. Commun. Math. Phys. 239, 493 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Bauer, M., Bernard, D.: SLE martingales and the Virasoro algebra. Phys. Lett. B 557, 309 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Bauer, M., Bernard, D.: SLE, CFT and zig-zag probabilities. In: Lawler, G., Khanin, K., Norris, J. (eds.) Conformal Invariance and Random Spatial Processes. NATO Advanced Study Institute. NATO, Brussels (2003) Google Scholar
  6. 6.
    Bauer, M., Bernard, D.: Conformal transformations and the SLE partition function martingale. Ann. Henri Poincaré 5, 289 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Bauer, M., Bernard, D.: CFTs of SLEs: the radial case. Phys. Lett. B 583, 324 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Bauer, M., Bernard, D.: Loewner chains. In: Baulie, L., et al. (eds.) String Theory: From Gauge Interactions to Cosmology. NATO Advanced Study Institute. Springer, Dordrecht (2004) Google Scholar
  9. 9.
    Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432, 115 (2006) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Bauer, M., Bernard, D., Houdayer, J.: Dipolar SLEs. J. Stat. Mech. P03001 (2005) Google Scholar
  11. 11.
    Bauer, M., Bernard, D., Kytölä, K.: Multiple Schramm-Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120, 1125 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Bauer, M., Bernard, D., Kennedy, T.-G.: Conditioning SLEs and loop-erased random walks. J. Math. Phys. 50, 043301 (2009) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Beffara, V.: The dimension of the SLE curve. Ann. Probab. 36, 1421 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field-theory. Nucl. Phys. B 241, 333 (1984) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268, 1 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Camia, F., Newman, C.M.: Critical percolation exploration path and SLE6: a proof of convergence. Probab. Theory Relat. Fields 139, 473 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cardy, J.L.: Critical percolation in finite geometries. J. Phys. A, Math. Gen. 25, 201 (1992) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Cardy, J.L.: SLE for physicists. Ann. Phys. 318, 81 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Conway, J.H.: Functions of One Complex Variable I and II. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  20. 20.
    Dubédat, J.: Commutation relations for SLE. Commun. Pure Appl. Math. 60, 1792 (2007) zbMATHCrossRefGoogle Scholar
  21. 21.
    Duplantier, B., Kwon, K.-H.: Conformal invariance and intersection of random walks. Phys. Rev. Lett. 61, 2514 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    Friedrich, R., Werner, W.: Conformal restriction, highest weight representations and SLE. Commun. Math. Phys. 243, 105 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Graham, K.: On multiple Schramm-Loewner evolutions. J. Stat. Mech. P03008 (2007) Google Scholar
  24. 24.
    Gruzberg, I.: Stochastic geometry of critical curves, Schramm-Loewner evolutions, and conformal field-theory. J. Phys. A, Math. Gen. 39, 12601 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Gruzberg, I., Kadanov, L.: The Loewner equation: maps and shapes. J. Stat. Phys. 114, 1183 (2004) ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Hagendorf, C., Bernard, D., Bauer, M.: The Gaussian free field and SLE4 on doubly-connected domains. J. Stat. Phys. 140, 1 (2010) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Kager, W., Nienhuis, B.: A guide to stochastic Loewner evolution and its applications. J. Stat. Phys. 15, 1149 (2004) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Kuo, H.-H.: Introduction to Stochastic Integration. Springer, Heidelberg (2006) zbMATHGoogle Scholar
  29. 29.
    Kytölä, K.: Virasoro module structure of local martingales of SLE variants. Rev. Math. Phys. 19, 455 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kytölä, K.: SLE local martingales in logarithmic representations. J. Stat. Mech. P08005 (2009) Google Scholar
  31. 31.
    Kytölä, K., Kemppainen, A.: SLE local martingales, reversibility and duality. J. Phys. A, Math. Gen. 39, 657 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    Lawler, G.F.: A self-avoiding walk. Duke Math. J. 47, 655 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersections exponents I: half-plane exponents. Acta Math. 187, 237 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersections exponents II: plane exponents. Acta Math. 187, 275 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Lawler, G.F., Schramm, O., Werner, W.: The dimension of the planar Brownian frontier is 4/3. Math. Res. Lett. 8, 401 (2001) MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for 2D critical percolation. Electron. J. Probab. 7, 2 (2001) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersections exponents III: two-sided exponents. Ann. Inst. Henri Poincaré 38, 109 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning tress. Ann. Probab. 32, 939 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. Proc. Symp. Pure Math. 72, 339 (2004) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Loewner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103 (1923) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Mathieu, P., Ridout, D.: From percolation to logarithmic conformal field theory. Phys. Lett. B 657, 120 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Nolin, P., Werner, W.: Asymmetry of near-critical percolation interfaces. J. Am. Math. Soc. 22, 797 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Pommerenke, C.: Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen. Vandenhoeck & Ruprecht, Göttingen (1975) zbMATHGoogle Scholar
  44. 44.
    Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 879 (2005) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Schramm, O., Wilson, D.: SLE coordinate change. N.Y. J. Math. 11, 659 (2005) MathSciNetzbMATHGoogle Scholar
  47. 47.
    Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris 333, 239 (2001) ADSzbMATHGoogle Scholar
  48. 48.
    Zhan, D.: Duality of chordal SLE. Invent. Math. 174, 309 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Zhan, D.: Reversibility of chordal SLE. Ann. Probab. 36, 1472 (2008) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IPhTCEA-SaclayGif-sur-YvetteFrance
  2. 2.LPTENSParisFrance

Personalised recommendations