Skip to main content

Control of Neuronal Gene Transcription and Behavior by the Epigenetic Suppressor Complex G9a/GLP

  • Chapter
  • First Online:
Epigenetics, Brain and Behavior

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 1570 Accesses

Abstract

Epigenetic control of cellular phenotypes is governed by numerous enzymes that contribute to post-synthetic modifications of DNA and associated histone proteins. These modifications facilitate the assembly of protein complexes that regulate gene expression in a highly orchestrated fashion. The importance of epigenetic regulators in brain development and function is supported by the strong association between mental retardation in humans and the aberrant structure or expression of various epigenetic regulators

Using conditional mutagenesis in mice, we found that the histone methyltransferase complex G9a/GLP (Ehmt1/Ehmt2 in humans), which controls gene expression via di-methylation of histone 3 on lysine 9 (H3K9me2), regulates cognition and complex behavior in mice. Postnatal neuron-specific loss of G9a/GLP in mice recapitulates key symptoms of a severe mental retardation syndrome in humans that is associated with the reduced expression of GLP/Ehmt1. In an attempt to unravel the mechanism of G9a/GLP regulated cognition and behavior, we will discuss the nature of gene expression changes associated with the loss of G9a/GLP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balemans MC, Huibers MM, Eikelenboom NW, Kuipers AJ, van Summeren RC, Pijpers MM, Tachibana M, Shinkai Y, van Bokhoven H, Van der Zee CE (2010) Reduced exploration, increased anxiety, and altered social behavior: autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav Brain Res 208:47–55

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  PubMed  CAS  Google Scholar 

  • Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P (2008) Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–974

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Garg A (1999) Monogenic disorders of obesity and body fat distribution. J Lipid Res 40:1735–1746

    PubMed  CAS  Google Scholar 

  • Chen H, Ke Q, Kluz T, Yan Y, Costa M (2006a) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26:3728–3737

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006b) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66:9009–9016

    Article  PubMed  CAS  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  PubMed  CAS  Google Scholar 

  • Cormier-Daire V, Molinari F, Rio M, Raoul O, de Blois MC, Romana S, Vekemans M, Munnich A, Colleaux L (2003) Cryptic terminal deletion of chromosome 9q34: a novel cause of syndromic obesity in childhood? J Med Genet 40:300–303

    Article  PubMed  CAS  Google Scholar 

  • Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P (2003) Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 116:4905–4914

    Article  PubMed  CAS  Google Scholar 

  • Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Doughty M, HarbaughCR CA, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27:9817–9823

    Article  PubMed  CAS  Google Scholar 

  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Ke Q, Davidson T, Chen H, Kluz T, Costa M (2006) Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 27:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Kleefstra T, Smidt M, Banning MJ, Oudakker AR, Van Esch H, de Brouwer AP, Nillesen W, Sistermans EA, Hamel BC, de Bruijn D, Fryns JP, Yntema HG, Brunner HG, de Vries BB, van Bokhoven H (2005) Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 42:299–306

    Article  PubMed  CAS  Google Scholar 

  • Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen W, Magee A, Genevieve D, Cormier-Daire V, van Esch H, Fryns JP, Hamel BC, Sistermans EA, de Vries BB, van Bokhoven H (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79:370–377

    Article  PubMed  CAS  Google Scholar 

  • Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, van Dooren M, Willemsen MH, Pfundt R, Turner A, Wilson M, McGaughran J, Rauch A, Zenker M, Adam M, Innes M, Davies C, Gonzalez-Meneses Lopez A, Casalone R, Weber A, Brueton LA, Delicado Navarro A, Palomares Bralo M, Venselaar H, Stegmann SP, Yntema HG, van Bokhoven H, Brunner HG (2009) Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet 46:598–606

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Lehnertz B, Northrop JP, Antignano F, Burrows K, Hadidi S, Mullaly SC, Rossi FM, Zaph C (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207:915–922

    Article  PubMed  CAS  Google Scholar 

  • Ooi L, Wood IC (2008) Regulation of gene expression in the nervous system. Biochem J 414:327–341

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Ghosh A (2008) A brief history of neuronal gene expression: regulatory mechanisms and cellular consequences. Neuron 60:449–455

    Article  PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Sampath SC, Marazzi I, Yap KL, Sampath SC, Krutchinsky AN, Mecklenbrauker I, Viale A, Rudensky E, Zhou MM, Chait BT, Tarakhovsky A (2007) Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 27:596–608

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, Sampath S, Intrator A, Min A, Gertler T, Surmeier DJ, Tarakhovsky A, Greengard P (2009) Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64:678–691

    Article  PubMed  CAS  Google Scholar 

  • Shirato H, Ogawa S, Nakajima K, Inagawa M, Kojima M, Tachibana M, Shinkai Y, Takeuchi T (2009) A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9. J Biol Chem 284:733–739

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Sugimoto K, Fukushima T, Shinkai Y (2001) Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276:25309–25317

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19:815–826

    Article  PubMed  CAS  Google Scholar 

  • Thomas LR, Miyashita H, Cobb RM, Pierce S, Tachibana M, Hobeika E, Reth M, Shinkai Y, Oltz EM (2008) Functional analysis of histone methyltransferase g9a in B and T lymphocytes. J Immunol 181:485–493

    PubMed  CAS  Google Scholar 

  • Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41:246–250

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495

    Article  PubMed  CAS  Google Scholar 

  • Yatsenko SA, Cheung SW, Scott DA, Nowaczyk MJ, Tarnopolsky M, Naidu S, Bibat G, Patel A, Leroy JG, Scaglia F, Stankiewicz P, Lupski JR (2005) Deletion 9q343 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly. J Med Genet 42:328–335

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Hofmann C, Casanova E, Schutz G, Lutz B (2004) Generation of a conditional allele of the CBP gene in mouse. Genesis 40:82–89

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Paul Greengard and Alexander Tarakhovsky for their support and discussions and Shrihari Sampath, Myriam Heiman, James Surmeier, and Nathaniel Heintz for their contribution to the work. The work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the National Institute on Drug Abuse (NIDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Schaefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaefer, A. (2012). Control of Neuronal Gene Transcription and Behavior by the Epigenetic Suppressor Complex G9a/GLP. In: Sassone Corsi, P., Christen, Y. (eds) Epigenetics, Brain and Behavior. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27913-3_6

Download citation

Publish with us

Policies and ethics