Skip to main content

Plasticity of the Circadian System: Linking Metabolism to Epigenetic Control

  • Chapter
  • First Online:

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

Control of a large variety of neuronal, behavioral and physiological responses has been linked to the circadian clock, made possible through a transcriptional regulatory network that governs a significant portion of the genome. The harmonic oscillation of gene expression is paralleled by critical events of chromatin remodeling that appear to provide specificity and plasticity in circadian regulation. Accumulating evidence shows that the circadian epigenome appears to share intimate links with cellular metabolic processes, suggesting that the circadian epigenome might constitute the functional basis of tissue-specificity within biological pacemakers, specifically in neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12:540–550

    Article  PubMed  CAS  Google Scholar 

  • Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  • Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7:e52

    Article  PubMed  Google Scholar 

  • Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism – the epigenetic link. J Cell Sci 123:3837–3848

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  • Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P (2008) Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–974

    Article  PubMed  CAS  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  PubMed  CAS  Google Scholar 

  • Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P (2005) Circadian clock control by SUMOylation of BMAL1. Science 309:1390–1394

    Article  PubMed  CAS  Google Scholar 

  • Cermakian N, Sassone-Corsi P (2000) Multilevel regulation of the circadian clock. Nat Rev Mol Cell Biol 1:59–67

    Article  PubMed  CAS  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  PubMed  CAS  Google Scholar 

  • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed  CAS  Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    Article  PubMed  CAS  Google Scholar 

  • Eckel-Mahan K, Sassone-Corsi P (2009) Metabolism control by the circadian clock and vice versa. Nat Struct Mol Biol 16:462–467

    Article  PubMed  CAS  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod non-cone ocular photoreceptors. Science 284:502–504

    Article  PubMed  CAS  Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4:1165

    Article  PubMed  CAS  Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology aging and calorie restriction. Genes Dev 20:2913–2921

    Article  PubMed  CAS  Google Scholar 

  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17:1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, Sassone-Corsi P (2006) Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5:873–877

    Article  PubMed  CAS  Google Scholar 

  • Lehman MN, Silver R, Gladstone W, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638

    PubMed  CAS  Google Scholar 

  • Masri S, Sassone-Corsi P (2010) Plasticity and specificity of the circadian epigenome. Nat Neurosci 13:1324–1329

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  PubMed  CAS  Google Scholar 

  • Morse D, Sassone-Corsi P (2002) Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci 25:632–637

    Article  PubMed  CAS  Google Scholar 

  • Murray DB, Beckmann M, Kitano H (2007) Regulation of yeast oscillatory dynamics. Proc Natl Acad Sci USA 104:2241–2246

    Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  PubMed  CAS  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  PubMed  CAS  Google Scholar 

  • Pando MP, Morse D, Cermakian N, Sassone-Corsi P (2002) Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 110:107–117

    Article  PubMed  CAS  Google Scholar 

  • Quintero JE, Kuhlman SJ, McMahon DG (2003) The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci 23:8070–8076

    PubMed  CAS  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Merrow M (2005) Circadian clocks – the fall and rise of physiology. Nat Rev Mol Cell Biol 6:965–971

    Article  PubMed  CAS  Google Scholar 

  • Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9:886–896

    Article  PubMed  CAS  Google Scholar 

  • Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111:919–922

    Article  PubMed  CAS  Google Scholar 

  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  PubMed  CAS  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  PubMed  CAS  Google Scholar 

  • Tousson E, Meissl H (2004) Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci 24:2983–2988

    Article  PubMed  CAS  Google Scholar 

  • Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P (2002) Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 99:7728–7733

    Article  PubMed  CAS  Google Scholar 

  • Ueda HR, HayashiS CW, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192

    Article  PubMed  CAS  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Wang H, Liu Y, Shao C (2008) Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4:e1000193

    Article  PubMed  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank all members of our laboratory for discussions and support. Work in the laboratory is supported by the National Institutes of Health, by the Inserm (Institut National de la Sante et la Recherche Medicale), France, and Sirtris Pharmaceutical Inc., a GSK Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Sassone-Corsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aguilar-Arnal, L., Zocchi, L., Masri, S., Katada, S., Sassone-Corsi, P. (2012). Plasticity of the Circadian System: Linking Metabolism to Epigenetic Control. In: Sassone Corsi, P., Christen, Y. (eds) Epigenetics, Brain and Behavior. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27913-3_3

Download citation

Publish with us

Policies and ethics