Skip to main content

Nucleosome Remodelling and Epigenome Diversification

  • Chapter
  • First Online:
Epigenetics, Brain and Behavior

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 1623 Accesses

Abstract

Nucleosome remodelling factors utilize chemical energy to disrupt histone-DNA interactions in nucleosomes. They catalyze a variety of structural changes ranging from complete nucleosome disassembly and the exchange of histone variants to the sliding of intact histone octamers along DNA. The essential involvement of some remodelling complexes in neuronal transcription programs is due to lineage-specific subunits that assure the selective targeting to neuronal promoters. In addition, nucleosome remodelers may contribute to the faithful silencing of competing transcription programs by maintaining the integrity and regularity of the nucleosomal fiber as a prerequisite for higher order chromatin organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–962

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Shen X (2011) SnapShot: chromatin remodeling: INO80 and SWR1. Cell 144:158–158 e152

    Article  PubMed  CAS  Google Scholar 

  • Becker PB (2002) Nucleosome sliding: facts and fiction. EMBO J 21:4749–4753

    Article  PubMed  CAS  Google Scholar 

  • Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273

    Article  PubMed  CAS  Google Scholar 

  • Belikov S, Gelius B, Almouzni G, Wrange O (2000) Hormone activation induces nucleosome positioning in vivo. EMBO J 19:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Brown E, Malakar S, Krebs JE (2007) How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development. Biochem Cell Biol 85:444–462

    Article  PubMed  CAS  Google Scholar 

  • Cairns BR (2007) Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14:989–996

    Article  PubMed  CAS  Google Scholar 

  • Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461:193–198

    Article  PubMed  CAS  Google Scholar 

  • Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ (2008) Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat Struct Mol Biol 15:1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Chioda M, Becker PB (2010) Soft skills turned into hard facts: nucleosome remodelling at developmental switches. Heredity 105:71–79

    Article  PubMed  CAS  Google Scholar 

  • Chioda M, Vengadasalam S, Kremmer E, Eberharter A, Becker PB (2010) Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. Development 137:3513–3522

    Article  PubMed  CAS  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  PubMed  CAS  Google Scholar 

  • de la Serna IL, Ohkawa Y, Imbalzano AN (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7:461–473

    Article  PubMed  Google Scholar 

  • Eberharter A, Ferreira R, Becker P (2005) Dynamic chromatin: concerted nucleosome remodelling and acetylation. Biol Chem 386:745–751

    Article  PubMed  CAS  Google Scholar 

  • Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T (2009) Nucleosomes can invade DNA territories occupied by their neighbors. Nat Struct Mol Biol 16:151–158

    Article  PubMed  CAS  Google Scholar 

  • Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887–2905

    Article  PubMed  CAS  Google Scholar 

  • Francis NJ, Saurin AJ, Shao Z, Kingston RE (2001) Reconstitution of a functional core polycomb repressive complex. Mol Cell 8:545–556

    Article  PubMed  CAS  Google Scholar 

  • Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170–183

    Article  PubMed  CAS  Google Scholar 

  • Gangaraju VK, Bartholomew B (2007) Mechanisms of ATP dependent chromatin remodeling. Mutat Res 618:3–17

    Article  PubMed  CAS  Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460:863–868

    PubMed  CAS  Google Scholar 

  • Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817–827

    Article  PubMed  CAS  Google Scholar 

  • Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484

    Article  PubMed  CAS  Google Scholar 

  • Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci U S A 106:5187–5191

    Article  PubMed  CAS  Google Scholar 

  • Kasten MM, Clapier CR, Cairns BR (2011) SnapShot: chromatin remodeling: SWI/SNF. Cell 144(310):e311

    Google Scholar 

  • Kazantseva A, Sepp M, Kazantseva J, Sadam H, Pruunsild P, Timmusk T, Neuman T, Palm K (2009) N-terminally truncated BAF57 isoforms contribute to the diversity of SWI/SNF complexes in neurons. J Neurochem 109:807–818

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Saraf A, Florens L, Washburn M, Workman JL (2010) Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev 24:2766–2771

    Article  PubMed  CAS  Google Scholar 

  • Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087–1090

    Article  PubMed  CAS  Google Scholar 

  • Korber P, Becker PB (2011) Nucleosome dynamics and epigenetic stability. Essays Biochem 48:63–74

    Article  Google Scholar 

  • Lamba DA, Hayes S, Karl MO, Reh T (2008) Baf60c is a component of the neural progenitor-specific BAF complex in developing retina. Dev Dyn 237:3016–3023

    Article  PubMed  CAS  Google Scholar 

  • Längst G, Becker PB (2001) Nucleosome mobilization and positioning by ISWI-containing chromatin remodeling factors. J Cell Sci 114:2561–2568

    PubMed  Google Scholar 

  • Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17:251–257

    Article  PubMed  CAS  Google Scholar 

  • Lavigne M, Eskeland R, Azebi S, Saint-Andre V, Jang SM, Batsche E, Fan HY, Kingston RE, Imhof A, Muchardt C (2009) Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 5:e1000769

    Article  PubMed  Google Scholar 

  • Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215

    Article  PubMed  CAS  Google Scholar 

  • Melcer S, Meshorer E (2010) Chromatin plasticity in pluripotent cells. Essays Biochem 48:245–262

    Article  PubMed  CAS  Google Scholar 

  • Mohrmann L, Langenberg K, Krijgsveld J, Kal AJ, Heck AJ, Verrijzer CP (2004) Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol Cell Biol 24:3077–3088

    Article  PubMed  CAS  Google Scholar 

  • Moshkin YM, Mohrmann L, van Ijcken WF, Verrijzer CP (2007) Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol 27:651–661

    Article  PubMed  CAS  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  PubMed  CAS  Google Scholar 

  • Olave I, Wang W, Xue Y, Kuo A, Crabtree GR (2002) Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev 16:2509–2517

    Article  PubMed  CAS  Google Scholar 

  • Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, Cooke R, Cheng Y, Narlikar GJ (2009) The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462:1016–1021

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL (2005) Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19:1723–1734

    Article  PubMed  CAS  Google Scholar 

  • Sims JK, Wade PA (2011) SnapShot: chromatin remodeling: CHD. Cell 144(626–626):e621

    Google Scholar 

  • Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M, Kobayashi R, Grewal SI (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128:491–504

    Article  PubMed  CAS  Google Scholar 

  • Varga-Weisz PD, Becker PB (2006) Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 16:151–156

    Article  PubMed  CAS  Google Scholar 

  • Vicent GP, Nacht AS, Font-Mateu J, Castellano G, Gaveglia L, Ballare C, Beato M (2011) Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev 2025:845–862

    Article  Google Scholar 

  • Workman JL (2006) Nucleosome displacement in transcription. Genes Dev 20:2009–2017

    Article  PubMed  CAS  Google Scholar 

  • Wu JI, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108

    Article  PubMed  CAS  Google Scholar 

  • Wu JI, Lessard J, Crabtree GR (2009) Understanding the words of chromatin regulation. Cell 136:200–206

    Article  PubMed  CAS  Google Scholar 

  • Yadon AN, Tsukiyama T (2011) SnapShot: chromatin remodeling: ISWI. Cell 144:453–453 e451

    Article  PubMed  Google Scholar 

  • Yoo AS, Crabtree GR (2009) ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 19:120–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research on nucleosome remodelling factors CHRAC and ACF in the author’s laboratory is funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, P.B. (2012). Nucleosome Remodelling and Epigenome Diversification. In: Sassone Corsi, P., Christen, Y. (eds) Epigenetics, Brain and Behavior. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27913-3_1

Download citation

Publish with us

Policies and ethics