Skip to main content

Fundamentals of Porous Structures

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 20))

Abstract

Macroscopic properties, such as capillary pressure and permeability, are important variables for mathematical modeling of transport processes in porous media. However, most transport properties exhibit great variability which cannot be modeled using deterministic approaches. This chapter presents a brief description of some fundaments of porous structures, namely, cell models, digital reconstruction of porous structures (using Lattice Boltzmann Method), porous media generation, and the stochastic modeling of pore space and transport properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adler, P.M., Thovert, J.F.: Real porous media: local geometry and macroscopic properties. Appl. Mech. Rev. 51, 537–585 (1998)

    Article  Google Scholar 

  2. Aharonov, E., Rothman, D.H.: Non-newtonian flow (through porous media): a lattice Boltzmann method. Geophys. Res. Lett. 20, 679–682 (1993)

    Article  Google Scholar 

  3. Ahmadi, A., Quintard, M., Whitaker, S.: Transport in chemically and mechanically heterogeneous porous media. Part V: two-equation model for solute transport with adsorption. Adv. Water Resour. 22, 59–86 (1998)

    Article  Google Scholar 

  4. Ammar, L., Hsieh, C.K.: Solution of the velocity and pressure fields for stokes flow inside an oblate hemispheroidal cap. Eur. J. Mech. B/Fluids 10, 171–178 (1991)

    Google Scholar 

  5. Bakke, S., Øren, P.E.: 3-D pore-scale modeling of sandstones and flow simulations in the pore networks. SPE. J. 2, 136–149 (1997)

    Google Scholar 

  6. Biswal, B., Manwart, C., Hilfer, R., Bakke, S., Øren, P.E.: Quantitative analysis of experimental and synthetic microstructures for sedimentary rock. Phys. A: Stat. Mech. Appl. 273, 452–475 (1999)

    Article  Google Scholar 

  7. Boek, E.S., Chin, J., Coveney, P.V.: Lattice Boltzmann simulation of the flow of non-newtonian fluids in porous media. Int. J. Mod. Phys. B 17, 99–102 (2003)

    Article  CAS  Google Scholar 

  8. Brinkman, H.C.: A calculation of the viscous force exerted by a bowing fluid on a dense swarm of particles. Appl. Sci. Res. Al, 27–34 (1947)

    Google Scholar 

  9. Bryant, S.L., Mellor, D.W., Cade, C.A.: Physically representative network models of transport in porous-media. AIChE J. 39, 387–396 (1993)

    Article  CAS  Google Scholar 

  10. Cancelliere, A., Chang, C., Foti, E., Rothman, D.H., Succi, S.: The permeability of a random medium: comparison of simulation with theory. Phys. Fluids A: Fluid 12, 2085–2088 (1990)

    Article  Google Scholar 

  11. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flow. Ann. Rev. Fluid. Mech. 30, 329–364 (1998)

    Article  Google Scholar 

  12. Chiang, H.W., Tien, C.: Dynamics of deep bed filtration: analysis of two limiting situations. AIChE J. 31, 1349–1355 (1985)

    Article  CAS  Google Scholar 

  13. Chiles, J.P., Delfiner, P.: Geostatisctics: Modeling Spatial Uncertainty. John Wiley and Sons, New York (1999)

    Book  Google Scholar 

  14. Choo, C.U., Tien, C.: Simulation of hydrosol deposition in granular media. AIChE J. 41, 1426–1431 (1995)

    Article  CAS  Google Scholar 

  15. Coelho, D., Thovert, J.F., Adler, P.M.: Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E 55, 1959–1978 (1997)

    Article  CAS  Google Scholar 

  16. Coker, D.A., Torquato, S., Dunsmuir, J.H.: Morphology and physical properties of fontainebleau sandstone via a tomographic analysis. J. Geophys. Res-Sol. Ea. 101, 17497–17506 (1996)

    Article  Google Scholar 

  17. Coutelieris, F.A., Kainourgiakis, M.E., Stubos, A.K., Kikkinides, E.S., Yortsos, Y.C.: Multiphase mass transport with partitioning and inter-phase transport in porous media. Chem. Eng. Sci. 61, 4650–4661 (2006)

    Article  CAS  Google Scholar 

  18. Cunningham, M.A.: On the velocity of steady fall of spherical particles through fluid medium. In: Proceedings of the Royal Society, London, A83, pp 357–365 (1910)

    Google Scholar 

  19. Dassios, G., Hadjinicolaou, M., Payatakes, A.C.: Generalized eigenfunctions and complete semi-separable solutions for stokes flow in spheroidal coordinates. Quart. Appl. Math. 52, 157–191 (1994)

    Google Scholar 

  20. Dassios, G., Hadjinicolaou, M., Coutelieris, F.A., Payatakes, A.C.: Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int. J. Eng. Sci. 33, 465–1490 (1995)

    Google Scholar 

  21. Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure, 2nd edn. Academic, San Diego (1992)

    Google Scholar 

  22. Epstein, N., Masliyah, J.H.: Creeping flow through clusters of spheroids and elliptical cylinders. Chem. Eng. J. 3, 169–175 (1972)

    Article  CAS  Google Scholar 

  23. Fredlund, M.D., Fredlund, D.G., Wilson, G.W.: An equation to represent grain-size distribution. Can. Geotech. J. 37, 817–827 (2000)

    Article  Google Scholar 

  24. Gabbanelli, S., Drazer, G., Koplik, J.: Lattice Boltzmann method for non-newtonian (power-law) fluids. Phys. Rev. E 72, 046312–046319 (2005)

    Article  Google Scholar 

  25. Gunstensen, A.K., Rothman, D.H.: Lattice-Boltzmann studies of immiscible 2-phase flow through porous-media. J. Geophys. Res-Sol. Ea. 98, 6431–6441 (1993)

    Article  Google Scholar 

  26. Happel, J.: Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J. 4, 197–201 (1958)

    Article  CAS  Google Scholar 

  27. Heijs, A.W.J., Lowe, C.P.: Numerical evaluation of the permeability and Kozeny constant for two types of porous media. Phys. Rev. E 51, 4346–4352 (1995)

    Article  CAS  Google Scholar 

  28. Hilfer, R.: Local porosity theory and stochastic reconstruction for porous media. In: Mecke, K.R., Stoyan, D. (eds.) Lecture Notes in Physics, 554th edn. Springer, Berlin (2000)

    Google Scholar 

  29. Hilfer, R., Manwart, C.: Permeability and conductivity for reconstruction models of porous media. Phys. Rev. E 64, 021304–021307 (2001)

    Article  CAS  Google Scholar 

  30. Jin, G., Patzek, T.W., Silin, D.B.: Physics-based reconstruction of sedimentary rocks. In: Proceedings of the SPE Western Regional/AAPG Pacific Section Joint Meeting, SPE 83587, Society of Petroleum Engineers, Long Beach, USA (2003)

    Google Scholar 

  31. Kainourgiakis, M.E., Kikkinides, E.S., Steriotis, T.A., Stubos, A.K., Tzevelekos, K.P., Kanellopoulos, N.K.: Structural and transport properties of alumina porous membranes from process-based and statistical reconstruction techniques. J. Colloid Interf. Sci. 23, 158–167 (2000)

    Article  Google Scholar 

  32. Kawaguti, M.: A hydrodynamical model for the sedimentation. J. Phys. Soc. Jpn. 3, 209–215 (1958)

    Article  Google Scholar 

  33. Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinder or spheres in a viscous flow at small reynolds numbers. J. Phys. Soc. Jpn. 14, 527–531 (1959)

    Article  Google Scholar 

  34. Latham, J.P., Lu, Y., Munjiza, A.: A random method for simulating loose packs of angular particles using tetrahedral. Geotechnique 51, 871–879 (2001)

    Article  Google Scholar 

  35. Latham, J.P., Munjiza, A., Lu, Y.: On the prediction of void porosity and packing of rock particulates. Powder Techn. 125, 10–27 (2002)

    Article  CAS  Google Scholar 

  36. Lerman, A.: Geochemical Processes: Water and Sediment Environments. Wiley, New York (1976)

    Google Scholar 

  37. Li, Y., LeBoeuf, E.J., Basu, P.K., Mahadevan, S.: Stochastic modeling of the permeability of randomly generated porous media. Adv. Water Resour. 28, 835–844 (2005)

    Article  Google Scholar 

  38. Lock, P.A., Jing, X.D., Zimmerman, R.W., Schlueter, E.M.: Predicting the permeability of sandstone from image analysis of pore structure. J. Appl. Phys. 92, 6311–6319 (2002)

    Article  CAS  Google Scholar 

  39. Lucia, F.J.: Carbonate Reservoir Characterization. Springer, Berlin (1999)

    Google Scholar 

  40. Manwart, C., Torquato, S., Hilfer, R.: Stochastic reconstruction of sandstones. Phys. Rev. E 62, 893–899 (2000)

    Article  CAS  Google Scholar 

  41. Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., Timonen, J.: Lattice-Boltzmann and finite-difference simulations for the permeability for three dimensional porous media. Phys. Rev. E 66, 016702–016713 (2002)

    Article  CAS  Google Scholar 

  42. Masliyah, J.H., Neale, G., Malysa, K., Van De Ven, G.M.: Creeping flow over a composite sphere: solid core with porous shell. Chem. Eng. Sci. 42, 245–253 (1987)

    Article  CAS  Google Scholar 

  43. Moritomi, H., Yamagishi, T., Chiba, T.: Prediction of complete mixing of liquid-fluidized binary solid particles. Chem. Eng. Sci. 41, 297–305 (1986)

    Article  CAS  Google Scholar 

  44. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976)

    Article  Google Scholar 

  45. Neale, G.H., Nader, W.: Prediction of transport processes within porous media: creeping flow relative to a fixed swarm of spherical particles. AIChE J. 20, 530–538 (1974)

    Article  CAS  Google Scholar 

  46. Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Petrol. Sci. Eng. 46, 121–137 (2005)

    Article  CAS  Google Scholar 

  47. Øren, P.E., Bakke, S.: Reconstruction of berea sandstone and pore-scale modeling of wettability effects. J. Petrol. Sci. Eng. 39, 177–199 (2003)

    Article  Google Scholar 

  48. Pan, C., Hilpert, M., Miller, C.T.: Pore-scale modeling of saturated permeabilities in random sphere packings. Phys. Rev. E 64, 0066702-1–0066702-9 (2001)

    Article  Google Scholar 

  49. Paraskeva, C.A., Burganos, V.N., Payatakes, A.C.: Three-dimensional trajectory analysis of particle deposition in constricted tubes. Chem. Eng. Commun. 108, 23–48 (1991)

    Article  CAS  Google Scholar 

  50. Payatakes, A.C., Tien, C., Turian, R.M.: A new model for granular porous media. Part I: model formulation. AIChE J. 19, 58–67 (1973)

    Article  CAS  Google Scholar 

  51. Payatakes, A.C., Tien, C., Turian, R.M.: Trajectory calculation of particle deposition in deep bed filtration. Part I: model formulation. AIChE J. 20, 889–900 (1974)

    Article  CAS  Google Scholar 

  52. Payatakes, A.C., Brown, D.H., Tien, C.: On the transient behavior of deep bed filtration. In: Proceedings of the 83rd National AIChE Meeting, Houston, USA (1977)

    Google Scholar 

  53. Pilotti, M.: Reconstruction of clastic porous media. Transport. Porous Med. 41, 359–364 (2000)

    Article  Google Scholar 

  54. Prasad, D., Narayan, K.A., Chhabra, R.P.: Creeping fluid flow relative to an assemblage of composite spheres. Int. J. Eng. Sci. 28, 215–230 (1990)

    Article  Google Scholar 

  55. Quintard, M., Whitaker, S.: One- and two-equation models for transient diffusion processes in two-phase systems. Adv. Heat Transf. 23, 369–464 (1993)

    Article  CAS  Google Scholar 

  56. Quintard, M., Whitaker, S.: Convection, dispersion, and interfacial transport of contaminants: homogeneous porous media. Adv. Water Resour. 17, 221–239 (1994)

    Article  Google Scholar 

  57. Quintard, M., Whitaker, S.: Transport in chemically and mechanically heterogeneous porous media I: theoretical development of region-averaged equations for slightly compressible single-phase flow. Adv. Water Resour. 19, 29–47 (1996)

    Article  Google Scholar 

  58. Rajagopalan, R., Tien, C.: Trajectory analysis of deep bed filtration using the sphere-in-cell model. AIChE J. 22, 523–528 (1976)

    Article  CAS  Google Scholar 

  59. Richardson, J.F., Zaki, W.N.: The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 3, 65–73 (1954)

    Article  CAS  Google Scholar 

  60. Rothman, D.H.: Cellular-automaton fluids: a model for flow in porous media. Geophysics 53, 509–518 (1988)

    Article  Google Scholar 

  61. Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66, 3273–3278 (1961)

    Article  Google Scholar 

  62. Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002)

    Article  Google Scholar 

  63. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    Google Scholar 

  64. Suciu, N., Vamos, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409–W04419 (2006)

    Article  Google Scholar 

  65. Sukop, M.C., Thorne Jr, D.T.: Lattice Boltzmann Modeling an Introduction for Geoscientists and Engineers. Springer, Berlin (2006)

    Google Scholar 

  66. Sullivan, S.P., Gladden, L.F., Johns, M.L.: Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques. J. Non-Newton. Fluid Mech. 133, 91–98 (2006)

    Article  CAS  Google Scholar 

  67. Tien, C.: Granular Filtration of Aerosols and Hydrosols. Butterworths, USA (1989)

    Google Scholar 

  68. Tien, C., Turian, R.M., Pendse, H.P.: Simulation of the dynamic behavior of deep bed filters. AIChE J. 25, 385–395 (1979)

    Article  CAS  Google Scholar 

  69. Thovert, J.F., Yousefian, F., Spanne, P., Jacquin, C.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity fontainebleau sandstone. Phys. Rev. E 63, 061307–061323 (2001)

    Article  CAS  Google Scholar 

  70. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  71. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Lecture Notes in Mathematics. Springer, New York (2000)

    Book  Google Scholar 

  72. Yang, A., Miller, C.T., Turcoliver, L.D.: Simulation of correlated and uncorrelated packing of random size spheres. Phys. Rev. E 53, 1516–1524 (1996)

    Article  CAS  Google Scholar 

  73. Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57, 495–506 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Coutelieris .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coutelieris, F.A., Delgado, J.M.P.Q. (2012). Fundamentals of Porous Structures. In: Transport Processes in Porous Media. Advanced Structured Materials, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27910-2_2

Download citation

Publish with us

Policies and ethics