Skip to main content

Accelerating Multiparty Computation by Efficient Random Number Bitwise-Sharing Protocols

  • Conference paper
Book cover Information Security Applications (WISA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7115))

Included in the following conference series:

Abstract

It is becoming more and more important to make use of personal or classified information while keeping it confidential. A promising tool for meeting this challenge is multiparty computation (MPC), which enables multiple parties, each given a snippet of a secret s, to compute a function f(s) by communicating with each other without revealing s. However, one of the biggest problems with MPC is that it requires a vast amount of communication and thus a vast amount of processing time. We analyzed existing MPC protocols and found that the random number bitwise-sharing protocol used by many of them is notably inefficient. We proposed efficient random number bitwise-sharing protocols, dubbed ‘‘Extended-Range I and II,” by devising a representation of the truth values that reduces the communication complexity to approximately 1/6th that of the best of the existing such protocol. We reduced the communication complexity to approximately 1/26th by reducing the abort probability, thereby making previously necessary backup computation unnecessary. Using our improved protocols, ‘‘Lightweight Extended-Range II,” we reduced the communication complexities of equality testing, comparison, interval testing, and bit-decomposition, all of which use the random number bitwise-sharing protocol, by approximately 91, 79, 67, and 23% (for 32-bit data) respectively. Our protocols are fundamental to sharing random number r ∈ ℤ p in binary form and can be applicable to other higher level protocols

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Constant Number of Rounds of Interaction. In: 8th Annual ACM Symposium on Principles of Distributed Computing, pp. 201–209. ACM Press, New York (1989)

    Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)

    Google Scholar 

  3. Cramer, R., Damgård, I.: Secure Distributed Linear Algebra in a Constant Number of Rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Cramer, R., Damgård, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and Fast-track Multiparty Computations with Applications to Threshold Cryptography. In: 17th Annual ACM Symposium on Principles of Distributed Computing, pp. 101–111. ACM Press, New York (1998)

    Google Scholar 

  7. Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction without Bit-Decomposition and a Generalization to Bit-Decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. SecureSCM. Security Analysis. Technical Report D9.2, SecureSCM (July 2009), http://www.securescm.org

  10. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Toft, T.: Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared Values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiribuchi, N., Kato, R., Nishide, T., Endo, T., Yoshiura, H. (2012). Accelerating Multiparty Computation by Efficient Random Number Bitwise-Sharing Protocols. In: Jung, S., Yung, M. (eds) Information Security Applications. WISA 2011. Lecture Notes in Computer Science, vol 7115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27890-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27890-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27889-1

  • Online ISBN: 978-3-642-27890-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics