Advertisement

Physical Processes of Interstellar Turbulence

  • Enrique Vázquez-Semadeni
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

This review discusses the role of radiative heating and cooling, as well as self-gravity, in shaping the nature of the turbulence in the interstellar medium (ISM) of our galaxy. The ability of the gas to radiatively cool, while simultaneously being immersed in a radiative heat bath, causes it to be much more compressible than if it were adiabatic, and, in some regimes of density and temperature, to become thermally unstable, and thus tend to spontaneously segregate into separate phases, one warm and diffuse, the other dense and cold. On the other hand, turbulence is an inherently mixing process, thus tending to replenish the density and temperature ranges that would be forbidden under thermal processes alone. The turbulence in the ionized ISM appears to be transonic (i.e, with Mach numbers \(M_{\text{s}}\,{\sim }\,1\)), and thus to behave essentially incompressibly. However, in the neutral medium, thermal instability causes the sound speed of the gas to fluctuate by up to factors of \({\sim}30\), and thus the flow can be highly supersonic with respect to the dense, cold gas. However, numerical simulations suggest that the supersonic velocity dispersion corresponds more to the ensemble of cold clumps than to the clumps’ internal velocity dispersion. Finally, coherent large-scale compressions in the warm neutral medium (induced by, say, the passage of spiral arms or by supernova shock waves) can produce large, dense, and turbulent clouds that are affected by their own self-gravity, and begin to contract gravitationally. Because they are populated by the nonlinear turbulent density fluctuations, whose local free-fall times can be significantly smaller than that of the whole cloud, the fluctuations terminate their collapse earlier, giving rise to a regime of hierarchical gravitational fragmentation, with small-scale collapses occurring within larger-scale ones. Thus, the “turbulence” in the cold, dense clouds may actually consist primarily of gravitationally contracting motions at all scales within them.

Keywords

Velocity Dispersion Density Fluctuation Molecular Cloud Thermal Instability Radiative Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armstrong JW, Rickett BJ, Spangler SR (1995) Astrophys J 443:209CrossRefGoogle Scholar
  2. Audit E, Hennebelle P (2005) Astron Astrophys 433:1CrossRefGoogle Scholar
  3. Audit E, Hennebelle P (2010) Astron Astrophys 511:A76CrossRefGoogle Scholar
  4. Ballesteros-Paredes J, Hartmann LW, Vázquez-Semadeni E, Heitsch F, Zamora-Avilés MA (2011a) Mon Notices Royal Astro Soc 411:65CrossRefGoogle Scholar
  5. Ballesteros-Paredes J, Vázquez-Semadeni E, Gazol A et al (2011b) Mon Notices Royal Astro Soc 416:1436CrossRefGoogle Scholar
  6. Banerjee R, Vázquez-Semadeni E, Hennebelle P, Klessen RS (2009) Mon Notices Royal Astro Soc 398:1082CrossRefGoogle Scholar
  7. Bate MR, Bonnell IA, Bromm V (2003) Mon Notices Royal Astro Soc 339:577CrossRefGoogle Scholar
  8. Bergin EA, Hartmann LW, Raymond JC, Ballesteros-Paredes J (2004) Astron Astrophys 612:921Google Scholar
  9. Blaisdell GA, Mansour NN, Reynolds WC (1993) J Fluid Mech 256:443CrossRefGoogle Scholar
  10. Blandford R, Eichler D (1987) Phys Rep 154:1CrossRefGoogle Scholar
  11. Blitz L, Shu FH (1980) Astron Astrophys 238:148Google Scholar
  12. Brunt CM, Heyer MH, and Mac Low M (2009) Astron Astrophys 504:883Google Scholar
  13. Burgers JM (1974) The nonlinear diffusion equation. Reidel, DordrechtGoogle Scholar
  14. Chepurnov A, Lazarian A (2010) Astron Astrophys 710:853Google Scholar
  15. Cho J, Lazarian A, Vishniac ET (2003) In: Turbulence and magnetic fields in astrophysics. E. Falgarone, T. Passot eds. Lecture Notes in Physics, (Springer) 614:56Google Scholar
  16. Chomiuk L, Povich MS (2011) Astron J 142:197CrossRefGoogle Scholar
  17. Clark PC, Bonnell IA (2005) Mon Notices Royal Astro Soc 361:2CrossRefGoogle Scholar
  18. Cox AN (2000) Allen’s astrophysical quantities. Springer, New York. ISBN 0387987460CrossRefGoogle Scholar
  19. Dalgarno A, McCray RA (1972) Annu Rev Astron Astrophys 10:375CrossRefGoogle Scholar
  20. Dalgarno A, McCray RA (2005) Astron Astrophys 436:585CrossRefGoogle Scholar
  21. Dickey JM, Terzian Y, Salpeter EE (1978) Astrophys J 36:77CrossRefGoogle Scholar
  22. Elmegreen BG (1991) The physics of star formation and early stellar evolution. In: Proceedings of NATO ASIC 342, p 35Google Scholar
  23. Elmegreen BG, Scalo J (2004) Annu Rev Astron Astrophys 42:211CrossRefGoogle Scholar
  24. Federrath C, Klessen RS, Schmidt W (2008) Astrophys J Lett 688:L79CrossRefGoogle Scholar
  25. Ferrière KM (2001) Rev Mod Phys 73:1031CrossRefGoogle Scholar
  26. Field GB (1965) Astrophys J 142:531CrossRefGoogle Scholar
  27. Field GB, Goldsmith DW, Habing HJ (1969) Astrophys J Lett 155:L149Google Scholar
  28. Galván-Madrid R, Keto E, Zhang Q et al (2009) Astrophys J 706:1036CrossRefGoogle Scholar
  29. Gazol A, Vázquez-Semadeni E, Sánchez-Salcedo FJ, Scalo J (2001) Astrophys J Lett 557:L121CrossRefGoogle Scholar
  30. Gazol A, Vázquez-Semadeni E, Kim J (2005) Astrophys J 630:911CrossRefGoogle Scholar
  31. Glover SCO, and Mac Low MM (2007) Astrophys J 659:1317Google Scholar
  32. Goldreich P, Kwan J (1974) Astrophys J 189:441CrossRefGoogle Scholar
  33. Goldreich P, Sridhar S (1995) Astrophys J 438:763CrossRefGoogle Scholar
  34. Hartmann L, Ballesteros-Paredes J, Bergin EA (2001) Astrophys J 562:852CrossRefGoogle Scholar
  35. Heiles C (2001) Astrophys J Lett 551:L105CrossRefGoogle Scholar
  36. Heiles C, Troland TH (2003) Astrophys J 586:1067CrossRefGoogle Scholar
  37. Heitsch F, Burkert A, Hartmann LW, Slyz AD, Devriendt JEG (2005) Astrophys J Lett 633:L113CrossRefGoogle Scholar
  38. Heitsch F, Hartmann L (2008) Astrophys J 689:290CrossRefGoogle Scholar
  39. Heitsch F, Hartmann LW, Burkert A (2008a) Astrophys J 683:786CrossRefGoogle Scholar
  40. Heitsch F, Hartmann LW, Slyz AD, Devriendt JEG, Burkert A (2008b) Astrophys J 674:316CrossRefGoogle Scholar
  41. Hennebelle P, Audit E (2007) Astron Astrophys 465:431CrossRefGoogle Scholar
  42. Hennebelle P, Banerjee R, Vázquez-Semadeni E, Klessen RS, Audit E (2008) Astron Astrophys 486:L43CrossRefGoogle Scholar
  43. Hennebelle P, Pérault M (1999) Astron Astrophys 351:309Google Scholar
  44. Heyer MH, Brunt CM (2004) Astrophys J Lett 615:L45CrossRefGoogle Scholar
  45. Hill AS, Benjamin RA, Kowal G et al (2008) Astrophys J 686:363CrossRefGoogle Scholar
  46. Koyama H, Inutsuka SI (2000) Astrophys J 532:980CrossRefGoogle Scholar
  47. Koyama H, Inutsuka SI (2002) Astrophys J Lett 564:L97CrossRefGoogle Scholar
  48. Kritsuk AG, Norman ML (2002) Astrophys J Lett 569:L127CrossRefGoogle Scholar
  49. Kulkarni SR, Heiles C (1987) Interstellar Process 134:87CrossRefGoogle Scholar
  50. Kwan J (1979) Astrophys J 229:567CrossRefGoogle Scholar
  51. Landau LD, Lifshitz EM (1959) Course of theoretical physics. Fluid mechanics, Pergamon Press, OxfordGoogle Scholar
  52. Larson RB (1981) Mon Notices Royal Astro Soc 194:809Google Scholar
  53. Mac Low MM, Klessen RS, Burkert A, and Smith MD (1998) Physi Rev Lett 80:2754Google Scholar
  54. Mac Low MM, Balsara DS, Kim J, and de Avillez MA (2005), Astrophys J 626:864Google Scholar
  55. Mac Low MM, and Klessen RS (2004) Rev Mod Phys 76:125Google Scholar
  56. McKee CF (1989) Astrophys J 345:782CrossRefGoogle Scholar
  57. McKee CF, Ostriker JP (1977) Astrophys J 218:148CrossRefGoogle Scholar
  58. McKee CF, Ostriker EC (2007) Annu Rev Astron Astrophys 45:565CrossRefGoogle Scholar
  59. McMillan PJ (2011) Mon Notices Royal Astro Soc 414:2446CrossRefGoogle Scholar
  60. Meerson B (1996) Rev Mod Phys 68:215CrossRefGoogle Scholar
  61. Myers PC (1978) Astrophys J 225:380CrossRefGoogle Scholar
  62. Norman C, Silk J (1980) Astrophys J 238:158CrossRefGoogle Scholar
  63. Osterbrock DE, Ferland GJ (2006) Astrophysics of gaseous nebulae and active galactic nuclei. In: Osterbrock DE, Ferland GJ (eds) 2nd edn. University Science Books, SausalitoGoogle Scholar
  64. Padoan P, Nordlund Å (1999) Astrophys J 526:279CrossRefGoogle Scholar
  65. Padoan P, Nordlund A, Jones BJT (1997) Mon Notices Royal Astro Soc 288:145Google Scholar
  66. Passot T, Vázquez-Semadeni E (1998) Phys Rev E 58:4501CrossRefGoogle Scholar
  67. Passot T, Vazquez-Semadeni E, Pouquet A (1995) Astrophys J 455:536CrossRefGoogle Scholar
  68. Piontek RA, Ostriker EC (2004) Astrophys J 601:905CrossRefGoogle Scholar
  69. Piontek RA, Ostriker EC (2005) Astrophys J 629:849CrossRefGoogle Scholar
  70. Sánchez-Salcedo FJ, Vázquez-Semadeni E, Gazol A (2002) Astrophys J 577:768CrossRefGoogle Scholar
  71. Schneider N, Bontemps S, Simon R et al (2011) Astron Astrophys 529:A1CrossRefGoogle Scholar
  72. Schneider N, Csengeri T, Bontemps S et al (2010) Astron Astrophys 520:A49CrossRefGoogle Scholar
  73. Shu FH (1992) Physics of astrophysics, vol II. University Science Books, SausalitoGoogle Scholar
  74. Shu FH, Adams FC, Lizano S (1987) Annu Rev Astron Astrophys 25:23CrossRefGoogle Scholar
  75. Stone JM, Ostriker EC, Gammie CF (1998) Astrophys J Lett 508:L99CrossRefGoogle Scholar
  76. Sutherland RS, Dopita MA (1993) Astrophys J 88:253CrossRefGoogle Scholar
  77. Toalá JA, Vázquez-Semadeni E, Gómez GC (2012) Astrophys J 744:190CrossRefGoogle Scholar
  78. Vázquez-Semadeni E (1994) Astrophys J 423:681CrossRefGoogle Scholar
  79. Vázquez-Semadeni E (1999) Millimeter-wave astronomy. Mol Chem and Phys space 241:161Google Scholar
  80. Vázquez-Semadeni E, Banerjee R, Gómez GC et al (2011) Mon Notices Royal Astro Soc 414:2511CrossRefGoogle Scholar
  81. Vázquez-Semadeni E, Cantó J, Lizano S (1998) Astrophys J 492:596CrossRefGoogle Scholar
  82. Vázquez-Semadeni E, Colín P, Gómez GC, Ballesteros-Paredes J, Watson AW (2010) Astrophys J 715:1302CrossRefGoogle Scholar
  83. Vázquez-Semadeni E, Gazol A, Scalo J (2000a) Astrophys J 540:271Google Scholar
  84. Vázquez-Semadeni E, Gazol A, Passot T et al (2003) In: Turbulence and magnetic fields in astrophysics. E. Falgarone, T. Passot eds. Lecture Notes in Physics, (Springer) 614:213Google Scholar
  85. Vázquez-Semadeni E, Gómez GC, Jappsen AK et al (2007) Astrophys J 657:870CrossRefGoogle Scholar
  86. Vázquez-Semadeni E, Gómez GC, Jappsen A-K, Ballesteros-Paredes J, Klessen RS (2009) Astrophys J 707:1023CrossRefGoogle Scholar
  87. Vázquez-Semadeni E, González RF, Ballesteros-Paredes J, Gazol A, Kim J (2008) Mon Notices Royal Astro Soc 390:769Google Scholar
  88. Vázquez-Semadeni E, Ostriker EC, Passot T, Gammie CF, and Stone JM (2000b) In: Protostars and planets IV. V. Mannings, AP Boss, SS Russell eds. (University of Arizona Press), 3Google Scholar
  89. Vázquez-Semadeni E, Passot T, Pouquet A (1996) Astrophys J 473:881Google Scholar
  90. Vázquez-Semadeni E, Ryu D, Passot T, González RF, Gazol A (2006) Astrophys J 643:245CrossRefGoogle Scholar
  91. Vishniac ET (1994) Astrophys J 428:186CrossRefGoogle Scholar
  92. Walder R, Folini D (2000) Astron Astrophys Space Sci 274:343CrossRefGoogle Scholar
  93. Williams JP, de Geus EJ, Blitz L (1994) Astrophys J 428:693CrossRefGoogle Scholar
  94. Wolfire MG, Hollenbach D, McKee CF, Tielens AGGM, Bakes ELO (1995) Astrophys J 443:152CrossRefGoogle Scholar
  95. Zuckerman B, Evans NJ (1974) Astrophys J 192:L149CrossRefGoogle Scholar
  96. Zuckerman B, Palmer P (1974) Annu Rev Astron Astrophys 12:279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centro de Radioastronomía y AstrofísicaUNAM Campus MoreliaMexico

Personalised recommendations