Skip to main content

Analysis of Transport Parameters for a Cr(VI) Contaminated Aquifer in México

  • Chapter
  • First Online:
  • 2054 Accesses

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

In the Buenavista area of Leon City, Mexico, Cr(VI) groundwater contamination was detected, originating from an industrial landfill with chromium compounds. A 2D vertical simulation model was established for the Buenavista study area. Laboratory and field data were incorporated into a finite element groundwater flow model and a solute transport model to analyze the transport parameters in the Buenavista shallow aquifer. A sensitivity analysis was performed to obtain values representative of the transport parameters (hydraulic conductivity [K], longitudinal, horizontal and vertical transverse dispersivities [αL, αTV], distribution coefficient [K d ], the initial concentration [Co] and pumping rates [Q]). This analysis allowed a good calibration of the model. The incorporation of the resulting set of parameters in the finite element model enabled the reproduction the observed contaminant plume in Buenavista close to 95 % match. The values obtained were αL = 50.0 m, αTV = 2.5 m, K d  = 0.007 mL/g, Co = 160 mg/L and Q = 100 m3/d. The sensitivity analysis indicated that the dispersion of the Cr(VI) plume is most sensitive to variations in hydraulic conductivity, the distribution coefficient, longitudinal and transverse dispersivity and pumping rates. In addition to the sensitivity analysis, it was observed that Q strongly affects the plume geometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armienta MA (1992) Contribución al estudio de los mecanismos de transporte del cromo en el acuífero de León Gto. Ph. D. Thesis, Mexico, UNAM, pp 213

    Google Scholar 

  • Bahr JM, Rubin J (1987) Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions. Water Resour Res 23(3):438–452

    Article  CAS  Google Scholar 

  • Basak P, Murty VVN (1979) Determination of hydrodynamic dispersion coefficients using “inverf”. J Hydrol 41:43–48

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Castelán RA, Villegas CI (1995) Control estratigráfico de la dispersión de compuestos de cromo en la zona de Buenavista, Edo. de Guanajuato. Bachelor Thesis in Geology. ESIA-IPN, Mexico, p 70

    Google Scholar 

  • Daus T, Frind EO, Sudicky EA (1985) Comparative error analysis in finite element formulations of the advection-dispersion equation. Adv Water Resour 8(2):86–95

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. John Wiley and Sons, New York

    Google Scholar 

  • Eberhardt C, Grathwohl P (2002) Time scales of organic contaminant dissolution from complex source zones: coal tar pools versus blobs. J Contam Hydrol 59(1–2):45–66

    Article  CAS  Google Scholar 

  • Garabedian SP, LeBlanc DR, Gelhar LW, Celia MA (1991) Large scale natural tracer test in sand and gravel, Cape Cod. Massachusetts Water Resour Res 27(5):911–924

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) Critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974

    Article  CAS  Google Scholar 

  • Grathwohl P (1998) Diffusion in natural porous media. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Grove DB, Stollenwerk KG (1985) Modeling the rate-controlled sorption of hexavalent chromium. Water Resour Res 21:1703–1709

    Article  CAS  Google Scholar 

  • Hill MC (1998) Methods and guidelines for effective model calibration, with application to: UCODE, a computer code for universal inverse modeling, and MODFLOWP, a computer code for inverse modeling with MODFLOW. U.S. Geological Survey Water-Resources Investigations Report 98–4005, p 90

    Google Scholar 

  • Istok J (1989) Groundwater modeling by the finite element method. [Water resources monograph 13]. American Geophysical Union, Washington

    Google Scholar 

  • Jiao JJ (1993) Data analysis methods for determining two-dimensional dispersive parameters. Groundwater 13(1):57–62

    Article  Google Scholar 

  • Klenk ID, Grathwohl P (2002) Transverse vertical dispersion in groundwater and the capillary fringe. J Contam Hydrol 58(1–2):111–128

    Article  CAS  Google Scholar 

  • Konikow LF (1977) Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal. U.S. Geological Survey Water-SupplyPaper 2044, pp 43

    Google Scholar 

  • Langmuir D (1997) Aqueous Environmental Geochemistry. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • McElwee CD (1982) Sensitivity analysis and the ground-water inverse problem. Gound Water 20(6):723–735

    Article  Google Scholar 

  • McElwee CD (1987) Sensitivity analysis of groundwater models. In: Bear J, Corapcioglu MY (eds) Advances in transport phenomena in porous media, NATO advanced study institute series, pp 751–817

    Google Scholar 

  • Mercer JW, Faust CR (1976) The application of finite element techniques to immiscible flow in porous media, paper presented at the international conference on finite element. In: Water Resources, Princeton University Princeton, July

    Google Scholar 

  • Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geological Survey Prof. Papers, 411-a, pp. 7

    Google Scholar 

  • Pickens JF, Lennox WC (1976) Numerical simulation of waste movement on steady groundwater flow system. Water Resour Res 12(2):171–180

    Article  Google Scholar 

  • Pinder GF (1973) A galerkin-finite element simulation of groundwater contamination on Long Island. New York Water Resour Res 9(6):1657–1669

    Article  Google Scholar 

  • Reyes-Gutiérrez LR (1998) Parámetros que controlan la dispersión de compuestos de Cr en un acuífero de conductividad hidráulica variable. Master Thesis (Geophysics). UNAM, México D. F. p 130

    Google Scholar 

  • Reyes-Gutiérrez LR (2007) Análisis de un sistema de remediación acuífera mediante bombeo y tratamiento en Buenavista, Guanajuato. Ph. Degree Thesis Geophysics). UNAM, México D. F. p 192

    Google Scholar 

  • Rivett MO, Feenstra S, Cherry JA (2001) A controlled field experiment on groundwater contamination by a multicomponent DNAPL: creation of the emplaced-source and overview of dissolved plume development. J Contam Hydrol 49(1–2):111–149

    Article  CAS  Google Scholar 

  • Rodríguez CR, Armienta MA, Villanueva S, Díaz P, González MT (1991) Estudio hidrogeoquímico y modelación matemática del acuífero del Río Turbio para definir acciones encaminadas a proteger de contaminantes la fuente de abastecimiento de la Cd. de León, Gto. Technical Report il. IGF UNAM, CNA SARH. , p 140, June 1991

    Google Scholar 

  • Rodríguez CR, Armienta MA (1995) Distribución de cromo en suelos y agua subterránea en el entorno de la empresa Química Central. Technical Report. IGF-UNAM. México D. F. p 27

    Google Scholar 

  • Robertson WD, Cherry JA, Sudicky EA (1991) Groundwater contamination from two small septic system on sands aquifers. Groundwater 29:82–92

    Article  CAS  Google Scholar 

  • Voss IC (1984) A finite-element simulation model for saturated-unsaturated. Fluid-density-dependent groundwater flow with energy transport or chemically-reactive single-species solute transport. U.S. Geological Survey, Water-Resources Investigations Report 84-4369, p 391

    Google Scholar 

  • Wagner BJ, Gorelick SM (1986) A statistical methodology for estimating transport parameters: theory and applications to a one-dimensional advective-dispersive systems. Water Resour Res 22(8):303–1315

    Article  Google Scholar 

  • Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under parameter uncertainty. Water Resour Res 23(7):1162–1174

    Article  CAS  Google Scholar 

  • Zheng C, Bennett GD (2002) Applied contaminant transport modeling, 2nd edn. Jhon Wiley and Sons Inc, New York 621

    Google Scholar 

  • Zienkiewicz OC (1977) The finite element method in engineering science. McGraw-Hill, London 865

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Chemical Central for its open doors policy. To Miss. Ellen Sue Weiss by technical help in English review of manuscript and we wish to thank her.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lázaro Raymundo Reyes-Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reyes-Gutiérrez, L.R., Rodríguez-Castillo, R., Romero-Guzmán, E.T., Ramos-Leal, J.A. (2013). Analysis of Transport Parameters for a Cr(VI) Contaminated Aquifer in México. In: Klapp, J., Medina, A., Cros, A., Vargas, C. (eds) Fluid Dynamics in Physics, Engineering and Environmental Applications. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27723-8_37

Download citation

Publish with us

Policies and ethics