Skip to main content

Numerical Study of Wind Field Adjustment with Radial Basis Functions

  • Chapter
  • First Online:
Fluid Dynamics in Physics, Engineering and Environmental Applications

Abstract

A collocation method based on radial basis functions (RBF) is introduced for wind field adjustment in meteorology. The numerical solutions are shown to be more accurate than those obtained with the finite element method (FEM), and they also require much less computational effort. A detailed analysis shows how inconsistent boundary conditions may affect numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39(2):159–169

    Article  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ferragut L, Montenegro R, Montero G, Rodríguez E, Asensio ML, Escobar JM (2010) Comparison between 2.5-D and 3-D realistic models for wind field adjustment. J Wind Eng Ind Aerodyn 98(10–11):548–558

    Article  Google Scholar 

  • Flores CF, Juárez LH, Nuñez MA, Sandoval ML (2010) Algorithms for vector field generation in mass consistent models. J Numer Methods PDE 26(4):826–842

    Google Scholar 

  • Kansa EJ (1990) Multiquadrics a scattered data approximation scheme with applications to computational fluid dynamics ii: solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8/9):147–161

    Article  Google Scholar 

  • Kitada T, Kaki A, Ueda H, Peters LK (1983) Estimation of the vertical air motion from limited horizontal wind data–a numerical experiment. Atmos Environ 17(11):2181–2192

    Article  Google Scholar 

  • Montero G, Rodríguez E, Montenegro R, Escobar JM, González-Yuste JM (2005) Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Adv Eng Softw 36:3–10

    Article  Google Scholar 

  • Ratto CF (1996) An overview of mass-consistent models. In: Lalas DP, Ratto CF (eds) Modeling of atmosphere flow fields. World Scientific Publications, Singapore, pp 379–400

    Google Scholar 

  • Ruhnau P, Schnörr C (2007) Optical stokes flow estimation: an imaging-based control approach. Exp Fluids 42(1):61–78

    Article  Google Scholar 

  • Sasaki Y (1958) An objective analysis based on the variational method. J Met Soc Jpn 36:77–88

    Google Scholar 

  • Sherman CA (1978) A mass-consistent model for wind fields over complex terrain. J Appl Meteorol 17(3):312–319

    Article  Google Scholar 

  • Wang Y, Williamson C, Garvey D, Chang S, Cogan J (2005) Application of a multigrid method to a mass-consistent diagnostic wind model. J Appl Meteorol 44(7):1078–1089

    Article  Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Reséndiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reséndiz, R., Héctor Juárez, L., González-Casanova, P., Cervantes, D.A., Gout, C. (2013). Numerical Study of Wind Field Adjustment with Radial Basis Functions. In: Klapp, J., Medina, A., Cros, A., Vargas, C. (eds) Fluid Dynamics in Physics, Engineering and Environmental Applications. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27723-8_34

Download citation

Publish with us

Policies and ethics