A CNC Machine for Stationary Drop Deposition and Coalescence in Liquid–Liquid Systems

  • F. Peña-PoloEmail author
  • L. Trujillo
  • J. Klapp
  • L. Di G. Sigalotti
Part of the Environmental Science and Engineering book series (ESE)


The controlled deposition of a dispensed liquid drop onto the surface layer of another liquid is a process that is widely applied in the industry. In most applications, the deposition of stationary drops requires a micrometric translational approach to the surface. Here we describe a computer controlled apparatus that has been constructed to perform precision translation of pendant drops and deposition at liquid and solid surfaces. Different settings of the experimental setup can be easily implemented in the laboratory for use in a variety of other applications, including surface tension measurements and wire bonding in microelectronics. Some experimental tests of partial drop coalescence with a miscible liquid are presented which validate the reliability of the apparatus.


Vortex Ring Computer Numerical Control Stepper Motor Front Panel Computer Numerical Control Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



F. P.-P. acknowledges the organizer of the XVII Annual Meeting of the Fluid Dynamics Division (XVII-DDF) of the Mexican Physical Society, with special mention to Anne Cros. This work has been partially supported by CONACyT-EDOMEX-2011-C01-165873 project.


  1. Arecchi FT, Buah-Bassuah PK, Francini F, Pérez-Garcia C, Quercioli F (1989) An experimental investigation of the break-up of a liquid drop falling in a miscible fluid. Europhys Lett 9(4):333–338CrossRefGoogle Scholar
  2. Arecchi FT, Buah-Bassuah PK, Francini F, Residori S (1996) Fragmentation of a drop as it falls in a lighter miscible fluid. Phys Rev E 54(1):424–429CrossRefGoogle Scholar
  3. Ben-Tzvi P, Ben Mrad R, Goldenberg AA (2007) A conceptual design and FE analysis of a piezoceramic actuated dispensing system for microdrops generation in microarray applications. Mechatronics 17:1–13CrossRefGoogle Scholar
  4. Blanchette F, Bigioni TP (2006) Partial coalescence of drops at liquid interfaces. Nat Phys 2:254–257CrossRefGoogle Scholar
  5. Dooley BS, Warncke AE, Gharib M, Tryggvason G (1997) Vortex ring generation due to the coalescence of a water drop at a free surface. Exp Fluids 22:369–374Google Scholar
  6. Harman G (2010) Wire bonding in microelectronics, 3rd edn. McGraw-Hill Professional, New YorkGoogle Scholar
  7. Klaassen KB (2002) Electronic measurement and instrumentation. Cambridge University Press, CambridgeGoogle Scholar
  8. Leïchlé T, Tanguy L, Nicu L (2007) Electrowetting-assisted drop deposition for controlled spotting. Appl Phys Lett 91:224102-1Google Scholar
  9. Lin S-Y, Wang W-J, Lin L-W, Chen L-J (1996) Systematic effects of bubble volume on the surface tension measured by pendant bubble profile. Colloids Surf A Physicochem Eng Aspects 114:31–39CrossRefGoogle Scholar
  10. Martin K, Henkel T, Baier V, Grodrian A, Schön T, Roth M, Köhler JM, Metze J (2003) Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 3:202–207CrossRefGoogle Scholar
  11. Moldovan N, Kim K-H, Espinosa HD (2006) Design and fabrication of a novel microfluidic nanoprobe. J Microelectromech Syst 15:204–213CrossRefGoogle Scholar
  12. Peña-Polo F, Trujillo L, Di Sigalotti LG (2010) A computer-controlled apparatus for micrometric drop deposition at liquid surfaces. Rev Sci Instrum 81:055107CrossRefGoogle Scholar
  13. Prasad SK (2004) Advanced wirebond interconnection technology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. Qian B, Loureiro M, Gagnon DA, Tripathi A, Breuer KS (2009) Micron-scale droplet deposition on a hydrophobic surface using a retreating syringe. Phys Rev Lett 102(16):164502-1Google Scholar
  15. Residori S, Pampaloni E, Buah-Bassuah PK, Arecchi FT (2000) Surface tension effects in the zero gravity inflow of a drop into a fluid. Eur Phys J B 15:331–334CrossRefGoogle Scholar
  16. Rommel W, Blass E, Meon W (1993) Plate separators for dispersed liquid-liquid systems: hydrodynamics coalescence model. Chem Eng Sci 48:159–168CrossRefGoogle Scholar
  17. Rood EP (1994) Interpreting vortex interactions with a free surface. J Fluid Eng 116:91–94CrossRefGoogle Scholar
  18. Shankar PN, Kumar M (1995) Vortex rings generated by drops just coalescing with a pool. Phys Fluids 7(4):737–746CrossRefGoogle Scholar
  19. Sigalotti L Di G, Peña-Polo F, Trujillo L (2012) An image analysis procedure for measuring the surface tension of pendant micro-drops. J Comput Methods Sci Eng (in press)Google Scholar
  20. Thomson JJ, Newall HF (1885) On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc R Soc Lond 39:417–436CrossRefGoogle Scholar
  21. Thoroddsen ST, Takehara K (2000) The coalescence cascade of a drop. Phys Fluids 12(6):1265–1267CrossRefGoogle Scholar
  22. van Kuik GAM (2004) The flow induced by Prandtl’s self-similar vortex sheet spirals at infinite distance from the spiral kernel. Eur J Mech B/Fluids 23:607–616CrossRefGoogle Scholar
  23. Yeow YL, Pepperell CJ, Sabturani FM, Leong Y-K (2008) Obtaining surface tension from pendant drop volume and radius of curvature at the apex. Colloids Surf A Physicochem Eng Aspects 315:136–146CrossRefGoogle Scholar
  24. Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76(17):4977–4982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. Peña-Polo
    • 1
    Email author
  • L. Trujillo
    • 1
    • 2
  • J. Klapp
    • 3
    • 4
  • L. Di G. Sigalotti
    • 1
  1. 1.Centro de FísicaInstituto Venezolano de Investigaciones Científicas, IVICCaracasVenezuela
  2. 2.The Abdus Salam International Centre for Theoretical Physics, ICTPTriesteItaly
  3. 3. Instituto Nacional de Investigaciones Nucleares, ININLa MarquesaMexico
  4. 4.Departamento de MatemáticasCinvestav del I.P.N.MexicoMexico

Personalised recommendations