Skip to main content

Applied Fluid Mechanics in the Environment, Technology and Health

  • Chapter
  • First Online:
Fluid Dynamics in Physics, Engineering and Environmental Applications

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2258 Accesses

Abstract

The objective of this chapter is to review the importance of fluid dynamics research and its impact on science and technology. Here we consider four particular areas of study, namely environmental fluid mechanics, turbulence, nano- and microfluids, and biofluid dynamics, with deeper emphasis on environmental flows. Each of these topics is illustrative of how improved scientific knowledge of fluid dynamics can have a major impact on important national needs and worldwide economies, as well as help developed nations to maintain their leadership in the production of novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel T, Bryan GL, Norman ML (1998) Numerical simulations of first structure formation. Soc Geol Ital Mem 69:377–384

    CAS  Google Scholar 

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • Arreaga-García G, Klapp J (2007) Gravitational collapse and fragmentation of molecular cloud cores with GADGET-2. Astrophys J 666:290–308

    Google Scholar 

  • Bader G, Deiterding R (1999) A distributed memory adaptive mesh refinement package for inviscid flow simulations. In: Jonas P, Uruba V (eds) Proceedings of colloquium on fluid dynamics. Institute of Thermodynamics (Academy of Science of Czech Republic), Prague, pp 9–14

    Google Scholar 

  • Baldwin BS, Lomax H (1978) Thin-layer approximation and algebraic model for separated turbulent flows. AIAA Paper, pp 78–257

    Google Scholar 

  • Bate MR (1998) Collapse of a molecular cloud core to stellar densities: the first three-dimensional calculations. Astrophys J 508:L95–L98

    Google Scholar 

  • Benz W (2000) Low velocity collisions and the growth of planetesimals. Space Sci Rev 92:279–294

    Google Scholar 

  • Berczik P, Kolesnik IG (1998) Gasodynamical model of the triaxial protogalaxy collapse. Astron Astrophys Trans 16(3):163–185

    Google Scholar 

  • Bhat GS, Krothapalli A (2000) Simulation of a round jet and a plume in a regional atmospheric model. Mon Weather Rev 128:4108–4117

    Google Scholar 

  • Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–83

    Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol I and II. Wiley, New York

    Google Scholar 

  • Blumen W, Banta R, Burns SP, Fritts DC, Newsom R, Poulos GS, Sun J (2001) Turbulence statistics of a Kelvin-Helmholtz billow event observed in the night-time boundary layer during Cooperative Atmosphere-Surface Exchange Study field program. Dyn Atmos Oceans 34:189–204

    Google Scholar 

  • Bodenheimer P, Tohline JE, Black DC (1980) Fragmentation in rotating isothermal protostellar clouds. Space Sci Rev 27:247–252

    Google Scholar 

  • Bonnell IA, Bate MR (1994) The formation of close binary systems. Mon Not R Astronom Soc 271:999–1004

    Google Scholar 

  • Boss AP, Durisen RH (2005) Sources of shock waves in the protoplanetary disk. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the Protoplanetary Disk. ASP conference series, vol 341, San Francisco, pp 821–838

    Google Scholar 

  • Boss AP (1981) Collapse and fragmentation of rotating, adiabatic clouds. Astrophys J 250:636–644

    Google Scholar 

  • Boss AP (1991) Formation of hierarchical multiple protostellar cores. Nature 351:298–300

    Google Scholar 

  • Bras RL (1990) Hydrology: an introduction to hydrologic science. Addison-Wesley, New York

    Google Scholar 

  • Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496

    Google Scholar 

  • Bruun HH (1995) Hot-wire anemometry. Oxford University Press, Oxford

    Google Scholar 

  • Bryan GL (1999) Fluids in the universe: adaptive mesh refinement in cosmology. Comput Sci Eng 1(2):46–53

    Google Scholar 

  • Centrella J, Melott AL (1983) Three-dimensional simulation of large-scale structure in the universe. Nature 305:196–198

    Google Scholar 

  • Chanson H (2004) Environmental hydraulics of open channel flows. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393

    CAS  Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Cho JR, Chung MK (1992) A k-\(\epsilon {-}\gamma \) equation turbulence model. J Fluid Mech 237:301–322

    CAS  Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y, Greogory-Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    CAS  Google Scholar 

  • Chow VT (1959) Open-channel hydraulics. McGraw-Hill College, New York

    Google Scholar 

  • Coirier WJ, Fricker DM, Furmanczyk M, Kim S (2005) A computational fluid dynamics approach for urban area transport and dispersion modeling. Environ Fluid Mech 15(5):443–479

    Google Scholar 

  • Conolly RB, Kimbell JS, Janszen D, Schlosser PM, Kalisak D, Preston J, Miller FJ (2003) Biologically motivated computational modeling of formaldehyde carcinogenicity in the F344 rat. Toxicol Sci 75(2):432–447

    CAS  Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions and granular materials. Wiley, New York

    Google Scholar 

  • Cushman-Roisin B, Beckers J-M (2011) Introduction to geophysical fluid dynamics: physical and numerical aspects. Elsevier Inc, Amsterdam

    Google Scholar 

  • Darcy M (1858) Note relative à quelques modifications à introduire dans le tube de Pitot. Annales des Ponts et Chaussées N\(^{\circ }\) 204:351–359

    Google Scholar 

  • Doyle PS, Bibette J, Bancaud A, Viory J-L (2002) Self-assembled magnetic matrices for DNA separation chips. Science 295:2237–2237

    CAS  Google Scholar 

  • Dritschel DG (1989) Contour dynamics and contour surgery: numerical algorithms for extended high-resolution modelling of vortex dynamics in two-dimensional, incompressible flows. Comput Phys Rep 10:79–146

    Google Scholar 

  • Evans JD, Lipemann D, Pisano, AP (1997) Planar laminar mixer. In: MEMS-97, The tenth annual international workshop on MEMS (Jan 26–30, 1997)

    Google Scholar 

  • Fernando HJS, Zajic D, Di Sabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Physics of Fluids 22(5):051301

    Google Scholar 

  • Fingerson LM, Freymuth P (1983) Thermal anemometers. In: Goldstein RJ (ed) Fluid mechanics measurements, Washington DC, Hemisphere, pp 99–154

    Google Scholar 

  • Fisher HB, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in Inland and coastal waters. Academic Press, San Diego

    Google Scholar 

  • Fukui S, Kaneko R (1988) Analysis of ultra thin gas film lubrication based on linearized Boltzmann equation. First report: derivation of a generalized lubrication equation including thermal creep flow. J Tribol 110:253–262

    CAS  Google Scholar 

  • Gad-El-Hak M (1999) The fluid mechanics of microdevices. J Fluids Eng 12(1):5–33

    Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astronom Soc 181:375–389

    Google Scholar 

  • Graessley WW (2004) Polymer liquids and networks: structure and properties. Garland Science, New York

    Google Scholar 

  • Graf WH, Mortimer CH (1979) Hydrodynamics of lakes. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Hanna SR, Tehranian S, Carissimo B, Macdonald RW, Lohner R (2002) Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos Environ 36:5067–5579

    CAS  Google Scholar 

  • Hanna SR et al (2006) Detailed simulation of atmospheric flow and dispersion in downtown Manhattan: an application of five computational fluid dynamics models. Bull Am Meteorol Soc 87:1713–1726

    Google Scholar 

  • Hayes MA, Polson NA (2001) Active control of dynamic supraparticle structures in microchannels. Langmuir 17:2866–2871

    CAS  Google Scholar 

  • Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255

    CAS  Google Scholar 

  • von Helmholtz H (1868) über discontinuierliche Flüssigkeits-Bewegungen. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin 23:215–228

    Google Scholar 

  • Hemond HF, Fechner EJ (1994) Chemical fate and transport in the environment. Academic Press, San Diego

    Google Scholar 

  • Henriksen K, Kemp WM (1988) Nitrification in estuarine and coastal marine sediments. Chapter 10. In Blackburn TH, Sorensen J (eds) Nitrogen cycling in coastal marine environments. SCOPE. Wiley, New Jersey

    Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Publisher Suderland, Massachusetts

    Google Scholar 

  • Ho CM, Tai YC (1998) Micro-electro-mechanical systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30:579–612

    Google Scholar 

  • Hoskins M, Kunz R, Bistline J, Dong C (2009) Coupled flow-structure-biochemistry simulations of dynamic systems of blood cells using an adaptive surface tracking method. J Fluids Struct 25:936–953

    Google Scholar 

  • Imberger J (1998) Physical processes in lakes and oceans. American Geophysical Union, Washington

    Google Scholar 

  • Jain N, Ottino JM, Lueptow RM (2002) An experimental study of the flowing granular layer in a rotating tumbler. Phys Fluids 14(2):572–582

    CAS  Google Scholar 

  • Jin X, Aluru NR (2011) Gated transport in nanofluidic devices. Microfluid Nanofluid 11:297–306

    Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows Nanoflows. Fundamentals and simulations. Springer, New York

    Google Scholar 

  • King J, Brown C, Sabet H (2003) A scenario-based holistic approach to environmental flow assessments for rivers. River Res Appl 19:619–639

    Google Scholar 

  • Klessen RS, Peters T, Banerjee R, Galván-Madrid R, Keto ER (2011) Modeling high-mass star formation and ultracompact \(\text{ H}_{{\rm II}}\) regions. In: Alves J, Elmegreen BG, Girart JM, Trimble V (eds) Computational star formation. Proceedings of the international astronomical union, IAU symposium vol 270, pp 107–114

    Google Scholar 

  • Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773

    Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc USSR Acad Sci 30:299–303 (in Russian)

    Google Scholar 

  • Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation 110:220–226

    Google Scholar 

  • Kroger M (2004) Simple models for complex non-equilibrium fluids. Phys Rep 390:453–551

    Google Scholar 

  • Kuo TC, Cannon DM, Shannon MA, Bohn PW, Sweedler JV (2003) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A: Phys 102:223–233

    Google Scholar 

  • Lawrence GA, Browand FK, Redekopp LG (1991) The stability of a sheared density interface. Phys Fluids A 3:2360–2370

    CAS  Google Scholar 

  • Lekakis I (1996) Calibration and signal interpretation for single and multiple hot-wire/hot-film probes. Measur Sci Technol 7:1313–1333

    CAS  Google Scholar 

  • Leyton-Mange J, Sung Y, Henty M, Kunz RF, Zahn J, Dong C (2006) Design of a side-view particle imaging velocimetry flow system for cell-substrate adhesion studies. J Biomech Eng 128:271–278

    Google Scholar 

  • Liang S, Slattery M, Wagner D, Simon S, Dong C (2008) Hydrodynamic shear rate regulates melanoma-leukocyte aggregation, melanoma adhesion to the endothelium, and subsequent extravasation. Ann Biomed Eng 36(4):661–671

    Google Scholar 

  • List EJ (1982) Turbulent jets and plumes. Annu Rev Fluid Mech 14:189–212

    Google Scholar 

  • Liu H (2005) Simulation-based biological fluid dynamics in animal locomotion. Appl Mech Rev 58(4):269–283

    Google Scholar 

  • Löhner R, Cebral J, Soto O, Yim PJ, Burgess JE (2003) Applications of patient-specific CFD in medicine and life sciences. Int J Numer Methods Fluids 43:637–650

    Google Scholar 

  • Lord Kelvin WT (1871) Hydrokinetic solutions and observations. Philos Mag 42:362–377

    Google Scholar 

  • Lubin P, Glockner S, Chanson H (2010) Numerical simulation of a weak breaking tidal bore. Mech Res Comm 37(1):119–121

    Google Scholar 

  • Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Google Scholar 

  • Lueptow RM, Akonur A, Shinbrot T (2000) PIV for granular flows. Exp Fluids 28(2):183–186

    Google Scholar 

  • Macosko CW (1994) Rheology: principles measurements and applications. Wiley, New York

    Google Scholar 

  • Makowski MR et al (2011) Assessment of atherosclerosis plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 17(3):383–388

    CAS  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282:2035–2042

    CAS  Google Scholar 

  • Mehregany M, Nagarkar P, Senturia S, Lang JH (1990) Operation of microfabricated harmonic and ordinary side-drive motor. In: IEEE Micro electro mechanical system workshop, Napa Valley, CA (Feb, 1990)

    Google Scholar 

  • Mellor GL, Herring HJ (1973) A survey of the mean turbulent field closure models. AIAA J 11:590–599

    Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Google Scholar 

  • Moeng CH, Sullivan PP (2002) Large eddy simulation. Encyclopedia of atmospheric sciences. Academic Press, San Diego, pp 1140–1150

    Google Scholar 

  • Morrison FA (2001) Underst Rheol. Oxford University Press, Oxford

    Google Scholar 

  • Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc A: Math Phys Eng Sci 234:1–23

    Google Scholar 

  • Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, Heistad DD (1996) Vascular remodeling. Hypertension 28(505–506):1996

    Google Scholar 

  • Nakane JJ, Akeson M, Marziali A (2003) Nanopores sensors for nucleic acid analysis. J Phys: Condens Matt 15:R1365–R1393

    CAS  Google Scholar 

  • Orazzo A, Coppola G, de Luca L (2011) Numerical simulation of single-wave Kelvin-Helmholtz instability in two-phase channel flow. In: 24th European conference on liquid atomization and spray systems, Estoril, Portugal (in press)

    Google Scholar 

  • Owens RG, Phillips TN (2002) Comput Rheol. Imperial College Press, London

    Google Scholar 

  • Pitot M (1732) Description d’une machine pour mesurer la vitesse des eaux courantes et le sillage des vaisseaux. Histoire de l’Académie Royale des Sciences avec les Mémoires de Mathématique et de Physique Tirés des Registres de cette Académie 363–376

    Google Scholar 

  • Pitsch H (2006) Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech 38:453–482

    Google Scholar 

  • Poff NL et al (2010) The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw Biol 55:147–170

    Google Scholar 

  • Pope SB (2000) Turbulent Flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Priestley CHB (1959) Turbulent transfer in the lower atmosphere. Chicago University Press, Chicago

    Google Scholar 

  • Pudasaini SP, Hsiau S-S, Wang Y, Hutter K (2005) Velocity measurements in dry granular avalanches using particle image velocimetry-technique and comparison with theoretical predictions. Phys Fluids 17(9):093301

    Google Scholar 

  • Pullin DI (1992) Contour dynamics methods. Annu Rev Fluid Mech 24:89–115

    Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. River Res Appl 22:297–318

    Google Scholar 

  • Rouse H, Yih C-S, Humphreys HW (1952) Gravitational convection from a boundary source. Tellus 4:201–210

    Google Scholar 

  • Schnoor JL (1996) Environmental modeling: fate and transport of pollutants in air, water, and soil. Wiley, New Jersey

    Google Scholar 

  • Scorer RS (1997) Dynamics of metereology and climate. Wiley, New York

    Google Scholar 

  • Seitzman JM, Hanson RK (1993) Planar fluorescence imaging in gases. In: Taylor AMKP (ed) Instrumentation for flows with combustion. Academic Press, San diego, pp 405–466

    Google Scholar 

  • Sigalotti LDiG, Klapp J (2001) Protostellar collapse models of prolate molecular cloud cores. Astron Astrophys 378:165–179

    Google Scholar 

  • Singh VP, Hager WH (1996) Environmental hydraulics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic equations. Mon Weather Rev 91:99–164

    Google Scholar 

  • Smith RB (1991) Kelvin-Helmholtz instability in severe downslope wind flow. J Atmos Sci 48:1319–1324

    Google Scholar 

  • Springel V et al (2005) Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435:629–636

    CAS  Google Scholar 

  • Springel V, Yoshida N, White SDM (2001) GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron 6:79–117

    CAS  Google Scholar 

  • Steinman DA (2002) Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 30:483–497

    Google Scholar 

  • Steinmetz M (1996) Simulating galaxy formation. In: Bonometto S, Primack JR, Provenzale A (eds) Dark matter in the universe. Proceedings of the international school of physics enrico fermi, course CXXXII, Varenna, pp 479–503

    Google Scholar 

  • Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Bound-Layer Metereol 126:1–28

    Google Scholar 

  • Sturm TW (2001) Open channel hydraulics. MacGraw Hill Higher Education, New York

    Google Scholar 

  • Suzuki YJ, Koyaguchi T (2007) Numerical simulations of turbulent mixing in eruption clouds. J Earth Simul 8:35–44

    Google Scholar 

  • Tagawa N (1993) State of the art for flying head slider mechanisms in magnetic recording disk storage. Wear 168:43–47

    Google Scholar 

  • Tanner RI (2000) Engineering rheology. Oxford University Press, Oxford

    Google Scholar 

  • Tell JL, Maris HJ (1983) Specific heats of hydrogen, deuterium, and neon in porous Vycor glass. Phys Rev B 28:5122–5125

    CAS  Google Scholar 

  • Telleman P, Larsen UD, Philip J, Blankenstein G, Wolf A et al (1998) Cell sorting in microfluidic systems. In: van den Berg H (ed) Micro total analysis systems ’98. Kluwer Academic Publishers, Dordrecht, p 44

    Google Scholar 

  • Terray A, Oakey J, Marr D (2002) Microfluidic control using colloidal devices. Science 296:1841–1843

    CAS  Google Scholar 

  • Tharme RE (2003) A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl 19:397–441

    Google Scholar 

  • Thorpe SA (1971) Experiments on the instability of stratified shear flows: miscible fluids. J Fluid Mech 46:299–319

    Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    CAS  Google Scholar 

  • Tobalske BW (2009) Symmetry in turns. Science 324:190–191

    CAS  Google Scholar 

  • Trimmer W (1997) Micromechanics and MEMS, Classical and seminal papers to 1990 (IEEE Press)

    Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge

    Google Scholar 

  • Udupa JK, Herman GT (2000) 3D imaging in medicine. CRC Press, Boca Ratón

    Google Scholar 

  • Vargo SE, Muntz EP (1996) A simple micromechanical compressor and vacuum pump for flow control and other distributed applications. In: Thirty-fourth aerospace sciences meeting and exhibit, Jan 15–18, 1996, Reno, NV, AIAA 96–0310

    Google Scholar 

  • Venkatakrishnan L, Bhat GS, Narasimha R (1999) Experiments on a plume with off-source heating: implications for cloud fluid dynamics. J Geophys Res 104(D12):14271–14281

    Google Scholar 

  • Wagner C, Hüttl T, Sagaut P (2007) Large-Eddy simulation for acoustics. Cambridge University Press, Cambridge

    Google Scholar 

  • Ward AD, Trimble SW (2004) Environmental Hydrology (Boca Ratón. Lewis Publishers, CRC Press), FL

    Google Scholar 

  • Wei T, Willmarth WW (1991) Examination of \(v\)-velocity fluctuations in a turbulent channel flow in the context of sediment transport. J Fluid Mech 223:241–252

    Google Scholar 

  • Westerweel J (1993) Digital particle velocimetry—theory and application. Delft University Press, Delft

    Google Scholar 

  • Wittek A, Nielsen PMF, Miller K (eds) (2011) Computational biomechanics for medicine. Springer, Heidelberg

    Google Scholar 

  • Yea Y, Cummings HZ (1964) Localized fluid flow measurements with an He-Ne laser spectrometer. Appl Phys Lett 4:176–178

    Google Scholar 

  • Zabusky NJ, Hughes MH, Roberts KV (1979) Contour dynamics for the Euler equations in two dimensions. J Comput Phys 30:96–106

    Google Scholar 

Download references

Acknowledgments

L. T. acknowledges the organizers of the XVII Annual Meeting of the Fluid Dynamics Division (XVII-DDF) of the Mexican Physical Society, with special mention to Anne Cros.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Klapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klapp, J., Sigalotti, L.D.G., Trujillo, L., Stern, C. (2013). Applied Fluid Mechanics in the Environment, Technology and Health. In: Klapp, J., Medina, A., Cros, A., Vargas, C. (eds) Fluid Dynamics in Physics, Engineering and Environmental Applications. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27723-8_1

Download citation

Publish with us

Policies and ethics