Applied Fluid Mechanics in the Environment, Technology and Health

  • J. KlappEmail author
  • L. Di G. Sigalotti
  • L. Trujillo
  • C. Stern
Part of the Environmental Science and Engineering book series (ESE)


The objective of this chapter is to review the importance of fluid dynamics research and its impact on science and technology. Here we consider four particular areas of study, namely environmental fluid mechanics, turbulence, nano- and microfluids, and biofluid dynamics, with deeper emphasis on environmental flows. Each of these topics is illustrative of how improved scientific knowledge of fluid dynamics can have a major impact on important national needs and worldwide economies, as well as help developed nations to maintain their leadership in the production of novel technologies.


Computational Fluid Dynamic Particle Image Velocimetry Smooth Particle Hydrodynamic Environmental Flow Computational Fluid Dynamic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



L. T. acknowledges the organizers of the XVII Annual Meeting of the Fluid Dynamics Division (XVII-DDF) of the Mexican Physical Society, with special mention to Anne Cros.


  1. Abel T, Bryan GL, Norman ML (1998) Numerical simulations of first structure formation. Soc Geol Ital Mem 69:377–384Google Scholar
  2. Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeGoogle Scholar
  3. Arreaga-García G, Klapp J (2007) Gravitational collapse and fragmentation of molecular cloud cores with GADGET-2. Astrophys J 666:290–308Google Scholar
  4. Bader G, Deiterding R (1999) A distributed memory adaptive mesh refinement package for inviscid flow simulations. In: Jonas P, Uruba V (eds) Proceedings of colloquium on fluid dynamics. Institute of Thermodynamics (Academy of Science of Czech Republic), Prague, pp 9–14Google Scholar
  5. Baldwin BS, Lomax H (1978) Thin-layer approximation and algebraic model for separated turbulent flows. AIAA Paper, pp 78–257Google Scholar
  6. Bate MR (1998) Collapse of a molecular cloud core to stellar densities: the first three-dimensional calculations. Astrophys J 508:L95–L98Google Scholar
  7. Benz W (2000) Low velocity collisions and the growth of planetesimals. Space Sci Rev 92:279–294Google Scholar
  8. Berczik P, Kolesnik IG (1998) Gasodynamical model of the triaxial protogalaxy collapse. Astron Astrophys Trans 16(3):163–185Google Scholar
  9. Bhat GS, Krothapalli A (2000) Simulation of a round jet and a plume in a regional atmospheric model. Mon Weather Rev 128:4108–4117Google Scholar
  10. Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–83Google Scholar
  11. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol I and II. Wiley, New YorkGoogle Scholar
  12. Blumen W, Banta R, Burns SP, Fritts DC, Newsom R, Poulos GS, Sun J (2001) Turbulence statistics of a Kelvin-Helmholtz billow event observed in the night-time boundary layer during Cooperative Atmosphere-Surface Exchange Study field program. Dyn Atmos Oceans 34:189–204Google Scholar
  13. Bodenheimer P, Tohline JE, Black DC (1980) Fragmentation in rotating isothermal protostellar clouds. Space Sci Rev 27:247–252Google Scholar
  14. Bonnell IA, Bate MR (1994) The formation of close binary systems. Mon Not R Astronom Soc 271:999–1004Google Scholar
  15. Boss AP, Durisen RH (2005) Sources of shock waves in the protoplanetary disk. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the Protoplanetary Disk. ASP conference series, vol 341, San Francisco, pp 821–838Google Scholar
  16. Boss AP (1981) Collapse and fragmentation of rotating, adiabatic clouds. Astrophys J 250:636–644Google Scholar
  17. Boss AP (1991) Formation of hierarchical multiple protostellar cores. Nature 351:298–300Google Scholar
  18. Bras RL (1990) Hydrology: an introduction to hydrologic science. Addison-Wesley, New YorkGoogle Scholar
  19. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496Google Scholar
  20. Bruun HH (1995) Hot-wire anemometry. Oxford University Press, OxfordGoogle Scholar
  21. Bryan GL (1999) Fluids in the universe: adaptive mesh refinement in cosmology. Comput Sci Eng 1(2):46–53Google Scholar
  22. Centrella J, Melott AL (1983) Three-dimensional simulation of large-scale structure in the universe. Nature 305:196–198Google Scholar
  23. Chanson H (2004) Environmental hydraulics of open channel flows. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  24. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393Google Scholar
  25. Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology. Butterworth-Heinemann, OxfordGoogle Scholar
  26. Cho JR, Chung MK (1992) A k-\(\epsilon {-}\gamma \) equation turbulence model. J Fluid Mech 237:301–322Google Scholar
  27. Choong TSY, Chuah TG, Robiah Y, Greogory-Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166Google Scholar
  28. Chow VT (1959) Open-channel hydraulics. McGraw-Hill College, New YorkGoogle Scholar
  29. Coirier WJ, Fricker DM, Furmanczyk M, Kim S (2005) A computational fluid dynamics approach for urban area transport and dispersion modeling. Environ Fluid Mech 15(5):443–479Google Scholar
  30. Conolly RB, Kimbell JS, Janszen D, Schlosser PM, Kalisak D, Preston J, Miller FJ (2003) Biologically motivated computational modeling of formaldehyde carcinogenicity in the F344 rat. Toxicol Sci 75(2):432–447Google Scholar
  31. Coussot P (2005) Rheometry of pastes, suspensions and granular materials. Wiley, New YorkGoogle Scholar
  32. Cushman-Roisin B, Beckers J-M (2011) Introduction to geophysical fluid dynamics: physical and numerical aspects. Elsevier Inc, AmsterdamGoogle Scholar
  33. Darcy M (1858) Note relative à quelques modifications à introduire dans le tube de Pitot. Annales des Ponts et Chaussées N\(^{\circ }\) 204:351–359Google Scholar
  34. Doyle PS, Bibette J, Bancaud A, Viory J-L (2002) Self-assembled magnetic matrices for DNA separation chips. Science 295:2237–2237Google Scholar
  35. Dritschel DG (1989) Contour dynamics and contour surgery: numerical algorithms for extended high-resolution modelling of vortex dynamics in two-dimensional, incompressible flows. Comput Phys Rep 10:79–146Google Scholar
  36. Evans JD, Lipemann D, Pisano, AP (1997) Planar laminar mixer. In: MEMS-97, The tenth annual international workshop on MEMS (Jan 26–30, 1997)Google Scholar
  37. Fernando HJS, Zajic D, Di Sabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Physics of Fluids 22(5):051301Google Scholar
  38. Fingerson LM, Freymuth P (1983) Thermal anemometers. In: Goldstein RJ (ed) Fluid mechanics measurements, Washington DC, Hemisphere, pp 99–154Google Scholar
  39. Fisher HB, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in Inland and coastal waters. Academic Press, San DiegoGoogle Scholar
  40. Fukui S, Kaneko R (1988) Analysis of ultra thin gas film lubrication based on linearized Boltzmann equation. First report: derivation of a generalized lubrication equation including thermal creep flow. J Tribol 110:253–262Google Scholar
  41. Gad-El-Hak M (1999) The fluid mechanics of microdevices. J Fluids Eng 12(1):5–33Google Scholar
  42. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  43. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astronom Soc 181:375–389Google Scholar
  44. Graessley WW (2004) Polymer liquids and networks: structure and properties. Garland Science, New YorkGoogle Scholar
  45. Graf WH, Mortimer CH (1979) Hydrodynamics of lakes. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  46. Hanna SR, Tehranian S, Carissimo B, Macdonald RW, Lohner R (2002) Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos Environ 36:5067–5579Google Scholar
  47. Hanna SR et al (2006) Detailed simulation of atmospheric flow and dispersion in downtown Manhattan: an application of five computational fluid dynamics models. Bull Am Meteorol Soc 87:1713–1726Google Scholar
  48. Hayes MA, Polson NA (2001) Active control of dynamic supraparticle structures in microchannels. Langmuir 17:2866–2871Google Scholar
  49. Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255Google Scholar
  50. von Helmholtz H (1868) über discontinuierliche Flüssigkeits-Bewegungen. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin 23:215–228Google Scholar
  51. Hemond HF, Fechner EJ (1994) Chemical fate and transport in the environment. Academic Press, San DiegoGoogle Scholar
  52. Henriksen K, Kemp WM (1988) Nitrification in estuarine and coastal marine sediments. Chapter 10. In Blackburn TH, Sorensen J (eds) Nitrogen cycling in coastal marine environments. SCOPE. Wiley, New JerseyGoogle Scholar
  53. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Publisher Suderland, MassachusettsGoogle Scholar
  54. Ho CM, Tai YC (1998) Micro-electro-mechanical systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30:579–612Google Scholar
  55. Hoskins M, Kunz R, Bistline J, Dong C (2009) Coupled flow-structure-biochemistry simulations of dynamic systems of blood cells using an adaptive surface tracking method. J Fluids Struct 25:936–953Google Scholar
  56. Imberger J (1998) Physical processes in lakes and oceans. American Geophysical Union, WashingtonGoogle Scholar
  57. Jain N, Ottino JM, Lueptow RM (2002) An experimental study of the flowing granular layer in a rotating tumbler. Phys Fluids 14(2):572–582Google Scholar
  58. Jin X, Aluru NR (2011) Gated transport in nanofluidic devices. Microfluid Nanofluid 11:297–306Google Scholar
  59. Karniadakis G, Beskok A, Aluru N (2005) Microflows Nanoflows. Fundamentals and simulations. Springer, New YorkGoogle Scholar
  60. King J, Brown C, Sabet H (2003) A scenario-based holistic approach to environmental flow assessments for rivers. River Res Appl 19:619–639Google Scholar
  61. Klessen RS, Peters T, Banerjee R, Galván-Madrid R, Keto ER (2011) Modeling high-mass star formation and ultracompact \(\text{ H}_{{\rm II}}\) regions. In: Alves J, Elmegreen BG, Girart JM, Trimble V (eds) Computational star formation. Proceedings of the international astronomical union, IAU symposium vol 270, pp 107–114Google Scholar
  62. Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773Google Scholar
  63. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc USSR Acad Sci 30:299–303 (in Russian)Google Scholar
  64. Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation 110:220–226Google Scholar
  65. Kroger M (2004) Simple models for complex non-equilibrium fluids. Phys Rep 390:453–551Google Scholar
  66. Kuo TC, Cannon DM, Shannon MA, Bohn PW, Sweedler JV (2003) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A: Phys 102:223–233Google Scholar
  67. Lawrence GA, Browand FK, Redekopp LG (1991) The stability of a sheared density interface. Phys Fluids A 3:2360–2370Google Scholar
  68. Lekakis I (1996) Calibration and signal interpretation for single and multiple hot-wire/hot-film probes. Measur Sci Technol 7:1313–1333Google Scholar
  69. Leyton-Mange J, Sung Y, Henty M, Kunz RF, Zahn J, Dong C (2006) Design of a side-view particle imaging velocimetry flow system for cell-substrate adhesion studies. J Biomech Eng 128:271–278Google Scholar
  70. Liang S, Slattery M, Wagner D, Simon S, Dong C (2008) Hydrodynamic shear rate regulates melanoma-leukocyte aggregation, melanoma adhesion to the endothelium, and subsequent extravasation. Ann Biomed Eng 36(4):661–671Google Scholar
  71. List EJ (1982) Turbulent jets and plumes. Annu Rev Fluid Mech 14:189–212Google Scholar
  72. Liu H (2005) Simulation-based biological fluid dynamics in animal locomotion. Appl Mech Rev 58(4):269–283Google Scholar
  73. Löhner R, Cebral J, Soto O, Yim PJ, Burgess JE (2003) Applications of patient-specific CFD in medicine and life sciences. Int J Numer Methods Fluids 43:637–650Google Scholar
  74. Lord Kelvin WT (1871) Hydrokinetic solutions and observations. Philos Mag 42:362–377Google Scholar
  75. Lubin P, Glockner S, Chanson H (2010) Numerical simulation of a weak breaking tidal bore. Mech Res Comm 37(1):119–121Google Scholar
  76. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024Google Scholar
  77. Lueptow RM, Akonur A, Shinbrot T (2000) PIV for granular flows. Exp Fluids 28(2):183–186Google Scholar
  78. Macosko CW (1994) Rheology: principles measurements and applications. Wiley, New YorkGoogle Scholar
  79. Makowski MR et al (2011) Assessment of atherosclerosis plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 17(3):383–388Google Scholar
  80. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282:2035–2042Google Scholar
  81. Mehregany M, Nagarkar P, Senturia S, Lang JH (1990) Operation of microfabricated harmonic and ordinary side-drive motor. In: IEEE Micro electro mechanical system workshop, Napa Valley, CA (Feb, 1990)Google Scholar
  82. Mellor GL, Herring HJ (1973) A survey of the mean turbulent field closure models. AIAA J 11:590–599Google Scholar
  83. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875Google Scholar
  84. Moeng CH, Sullivan PP (2002) Large eddy simulation. Encyclopedia of atmospheric sciences. Academic Press, San Diego, pp 1140–1150Google Scholar
  85. Morrison FA (2001) Underst Rheol. Oxford University Press, OxfordGoogle Scholar
  86. Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc A: Math Phys Eng Sci 234:1–23Google Scholar
  87. Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, Heistad DD (1996) Vascular remodeling. Hypertension 28(505–506):1996Google Scholar
  88. Nakane JJ, Akeson M, Marziali A (2003) Nanopores sensors for nucleic acid analysis. J Phys: Condens Matt 15:R1365–R1393Google Scholar
  89. Orazzo A, Coppola G, de Luca L (2011) Numerical simulation of single-wave Kelvin-Helmholtz instability in two-phase channel flow. In: 24th European conference on liquid atomization and spray systems, Estoril, Portugal (in press)Google Scholar
  90. Owens RG, Phillips TN (2002) Comput Rheol. Imperial College Press, LondonGoogle Scholar
  91. Pitot M (1732) Description d’une machine pour mesurer la vitesse des eaux courantes et le sillage des vaisseaux. Histoire de l’Académie Royale des Sciences avec les Mémoires de Mathématique et de Physique Tirés des Registres de cette Académie 363–376Google Scholar
  92. Pitsch H (2006) Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech 38:453–482Google Scholar
  93. Poff NL et al (2010) The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw Biol 55:147–170Google Scholar
  94. Pope SB (2000) Turbulent Flows. Cambridge University Press, CambridgeGoogle Scholar
  95. Priestley CHB (1959) Turbulent transfer in the lower atmosphere. Chicago University Press, ChicagoGoogle Scholar
  96. Pudasaini SP, Hsiau S-S, Wang Y, Hutter K (2005) Velocity measurements in dry granular avalanches using particle image velocimetry-technique and comparison with theoretical predictions. Phys Fluids 17(9):093301Google Scholar
  97. Pullin DI (1992) Contour dynamics methods. Annu Rev Fluid Mech 24:89–115Google Scholar
  98. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, BerlinGoogle Scholar
  99. Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. River Res Appl 22:297–318Google Scholar
  100. Rouse H, Yih C-S, Humphreys HW (1952) Gravitational convection from a boundary source. Tellus 4:201–210Google Scholar
  101. Schnoor JL (1996) Environmental modeling: fate and transport of pollutants in air, water, and soil. Wiley, New JerseyGoogle Scholar
  102. Scorer RS (1997) Dynamics of metereology and climate. Wiley, New YorkGoogle Scholar
  103. Seitzman JM, Hanson RK (1993) Planar fluorescence imaging in gases. In: Taylor AMKP (ed) Instrumentation for flows with combustion. Academic Press, San diego, pp 405–466Google Scholar
  104. Sigalotti LDiG, Klapp J (2001) Protostellar collapse models of prolate molecular cloud cores. Astron Astrophys 378:165–179Google Scholar
  105. Singh VP, Hager WH (1996) Environmental hydraulics. Kluwer Academic Publishers, DordrechtGoogle Scholar
  106. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic equations. Mon Weather Rev 91:99–164Google Scholar
  107. Smith RB (1991) Kelvin-Helmholtz instability in severe downslope wind flow. J Atmos Sci 48:1319–1324Google Scholar
  108. Springel V et al (2005) Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435:629–636Google Scholar
  109. Springel V, Yoshida N, White SDM (2001) GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron 6:79–117Google Scholar
  110. Steinman DA (2002) Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 30:483–497Google Scholar
  111. Steinmetz M (1996) Simulating galaxy formation. In: Bonometto S, Primack JR, Provenzale A (eds) Dark matter in the universe. Proceedings of the international school of physics enrico fermi, course CXXXII, Varenna, pp 479–503Google Scholar
  112. Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Bound-Layer Metereol 126:1–28Google Scholar
  113. Sturm TW (2001) Open channel hydraulics. MacGraw Hill Higher Education, New YorkGoogle Scholar
  114. Suzuki YJ, Koyaguchi T (2007) Numerical simulations of turbulent mixing in eruption clouds. J Earth Simul 8:35–44Google Scholar
  115. Tagawa N (1993) State of the art for flying head slider mechanisms in magnetic recording disk storage. Wear 168:43–47Google Scholar
  116. Tanner RI (2000) Engineering rheology. Oxford University Press, OxfordGoogle Scholar
  117. Tell JL, Maris HJ (1983) Specific heats of hydrogen, deuterium, and neon in porous Vycor glass. Phys Rev B 28:5122–5125Google Scholar
  118. Telleman P, Larsen UD, Philip J, Blankenstein G, Wolf A et al (1998) Cell sorting in microfluidic systems. In: van den Berg H (ed) Micro total analysis systems ’98. Kluwer Academic Publishers, Dordrecht, p 44Google Scholar
  119. Terray A, Oakey J, Marr D (2002) Microfluidic control using colloidal devices. Science 296:1841–1843Google Scholar
  120. Tharme RE (2003) A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl 19:397–441Google Scholar
  121. Thorpe SA (1971) Experiments on the instability of stratified shear flows: miscible fluids. J Fluid Mech 46:299–319Google Scholar
  122. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584Google Scholar
  123. Tobalske BW (2009) Symmetry in turns. Science 324:190–191Google Scholar
  124. Trimmer W (1997) Micromechanics and MEMS, Classical and seminal papers to 1990 (IEEE Press)Google Scholar
  125. Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, CambridgeGoogle Scholar
  126. Udupa JK, Herman GT (2000) 3D imaging in medicine. CRC Press, Boca RatónGoogle Scholar
  127. Vargo SE, Muntz EP (1996) A simple micromechanical compressor and vacuum pump for flow control and other distributed applications. In: Thirty-fourth aerospace sciences meeting and exhibit, Jan 15–18, 1996, Reno, NV, AIAA 96–0310Google Scholar
  128. Venkatakrishnan L, Bhat GS, Narasimha R (1999) Experiments on a plume with off-source heating: implications for cloud fluid dynamics. J Geophys Res 104(D12):14271–14281Google Scholar
  129. Wagner C, Hüttl T, Sagaut P (2007) Large-Eddy simulation for acoustics. Cambridge University Press, CambridgeGoogle Scholar
  130. Ward AD, Trimble SW (2004) Environmental Hydrology (Boca Ratón. Lewis Publishers, CRC Press), FL Google Scholar
  131. Wei T, Willmarth WW (1991) Examination of \(v\)-velocity fluctuations in a turbulent channel flow in the context of sediment transport. J Fluid Mech 223:241–252Google Scholar
  132. Westerweel J (1993) Digital particle velocimetry—theory and application. Delft University Press, DelftGoogle Scholar
  133. Wittek A, Nielsen PMF, Miller K (eds) (2011) Computational biomechanics for medicine. Springer, HeidelbergGoogle Scholar
  134. Yea Y, Cummings HZ (1964) Localized fluid flow measurements with an He-Ne laser spectrometer. Appl Phys Lett 4:176–178Google Scholar
  135. Zabusky NJ, Hughes MH, Roberts KV (1979) Contour dynamics for the Euler equations in two dimensions. J Comput Phys 30:96–106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Klapp
    • 1
    • 2
    Email author
  • L. Di G. Sigalotti
    • 3
  • L. Trujillo
    • 3
    • 4
  • C. Stern
    • 5
  1. 1.Instituto Nacional de Investigaciones Nucleares, ININ, Km. 36.5La MarquesaMéxico
  2. 2.Departamento de MatemáticasCinvestav del I.P.N.MexicoMexico
  3. 3.Centro de FísicaInstituto Venezolano de Investigaciones Científicas, IVICCaracasVenezuela
  4. 4.The Abdus SalamInternational Centre for Theoretical Physics, ICTPTriesteItaly
  5. 5.Facultad de CienciasUniversidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacánMéxico

Personalised recommendations