Skip to main content

Temporal Instabilities in Corrosion Processes

  • Chapter
  • First Online:

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

In this chapter, temporal dynamic instabilities in the electrode processes associated with anodic electrodissolution of metals and semiconductors are described. Oscillations in these processes are generally associated with the periodic buildup and destruction of the passive layer on the electrode surface. Following concise characteristics of the passive/active transitions, including general and pitting corrosion, several experimental systems and their theoretical models are described. Experimental characteristics of the Fe/H2SO4 system include its dynamic analogies with the neural excitation and conduction. The evolution of theoretical models of the instabilities in the Fe/H2SO4 system is shown. Furthermore, the instabilities in electrodissolution of copper in various media, of nickel in sulfuric acid (the latter system being a typical HN-NDR oscillator), of cobalt and of vanadium in various media are described. In brief, analogous phenomena for the electrodissolution of silver, gold, aluminum, as well as for lead, zinc, tin, titanium, bismuth, cadmium, niobium, and tungsten in various media are characterized. The possible application of anodic dissolution in the micromachining process is indicated. In the last section, the oscillatory electrodissolution of cadmium-based and silicon semiconductors is outlined, as the introduction to spatial and spatiotemporal self-organization in these processes, described in Chap. 4 of volume II. It is concluded that for satisfactory description of temporary instabilities in the anodic dissolution of both metals and semiconductors it is necessary to invoke the spatial inhomogeneity of the oxidized surfaces, as described in Chaps. 2–4 of volume II.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fechner GT (1828) Zur Elektrochemie. 1. Ueber Umkehrungen der Polarität in der einfachen Kette. Schweiger’s J (Journal für Chemie und Physik) 53:129–151

    Google Scholar 

  2. Wojtowicz J (1973) Oscillatory behavior in electrochemical systems. In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 8. Plenum, New York, pp 47–120

    Google Scholar 

  3. Hudson JL, Bassett MR (1991) Oscillatory electrodissolution of metals. In: Luss D, Amundson NR (eds) Reviews in chemical engineering. Freund, London

    Google Scholar 

  4. Hudson JL, Tsotsis TT (1994) Electrochemical reaction dynamics: a review. Chem Eng Sci 49:1493–1572

    Article  CAS  Google Scholar 

  5. Landolt D (2007) Corrosion and surface chemistry of metals. EPFL, Taylor and Francis, Boca Raton, FL

    Google Scholar 

  6. Brett CMA, Brett AMO (1993) Electrochemistry. Principles, methods and applications. Oxford University Press, Oxford

    Google Scholar 

  7. Russell PP, Newman J (1983) Experimental determination of the passive-active transition for iron in 1 M sulfuric acid. J Electrochem Soc 130:547–553

    Article  CAS  Google Scholar 

  8. Epelboin I, Gabrielli C, Keddam M, Takenouti H (1975) A model of the anodic behaviour of iron in sulphuric acid medium. Electrochim Acta 20:913–916

    Article  CAS  Google Scholar 

  9. Pigeau A, Kirkpatrick HB (1969) Corrosion 25:209

    Article  Google Scholar 

  10. Hudson JL, Tabora J, Krischer K, Kevrekidis IG (1993) Spatiotemporal period doubling during the electrodissolution of iron. Phys Lett A 179:335–363

    Article  Google Scholar 

  11. Russell P, Newman J (1987) Anodic dissolution of iron in acidic sulfate electrolytes. II. Mathematical model of current oscillations observed under potentiostatic conditions. J Electrochem Soc 134:1051–1059

    Article  CAS  Google Scholar 

  12. Keddam M (2002) In: Marcus P (ed) Corrosion mechanisms in theory and practice. Dekker, New York, p 97

    Chapter  Google Scholar 

  13. Deslouis C, Tribollet B (1990) Flow modulation technique and EHD impedance: a tool for electrode processes and hydrodynamic studies. Electrochim Acta 35:1637–1648

    Article  CAS  Google Scholar 

  14. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New Jersey

    Book  Google Scholar 

  15. Datta M, Romankiw LT (1989) Application of chemical and electrochemical micromachining in the electronics industry. J Electrochem Soc 136:285C–292C

    Article  CAS  Google Scholar 

  16. Kiss L (1988) Kinetics of electrochemical metal dissolution. Akadémiái Kiadó, Budapest

    Google Scholar 

  17. Bonhoeffer KF, Rennenberg W (1941) Activity waves on passive iron wires. Z physik Chem 118:389

    Article  CAS  Google Scholar 

  18. Kortüm G (1966) Lehrbuch der Elektrochemie, 4th edn. Verlag Chemie, Weinheim

    Google Scholar 

  19. Franck UF, Meunier L (1953) Gekoppelte periodische Elektrodenvorgänge. Z Naturforsch 8b: 396–406

    Google Scholar 

  20. Bartlett JH (1945) Transient anode phenomena. Trans Electrochem Soc 87:521–545

    Article  Google Scholar 

  21. Diem C, Hudson JL (1987) Chaos during the electrodissolution of iron. AIChE J 33:218–224

    Article  CAS  Google Scholar 

  22. Wang Y, Hudson JL (1991) Effect of electrode surface area on chaotic attractor dimensions. AIChE J 37:1833–1843

    Article  CAS  Google Scholar 

  23. Sazou D, Pagitsas M (2006) On the onset of current oscillations at the limiting current region emerged during iron electrodissolution in sulfuric acid solution. Electrochim Acta 51:6281–6296

    Article  CAS  Google Scholar 

  24. Koper MTM (1996) Oscillations and complex dynamical bifurcations in electrochemical systems. In: Prigogine I, Rice SA (eds) Adv Chem Phys XCII. Wiley, New York, pp 161–298

    Chapter  Google Scholar 

  25. Sazou D, Pagitsas M, Georgolios C (1992) The influence of chloride ions on the dynamic characteristics observed at the transition between corrosion and passivation states of an iron electrode in sulphuric acid solutions. Electrochim Acta 37:2067–2076

    Article  CAS  Google Scholar 

  26. Izhikevich EM (2007) Dynamical systems in neuroscience. The geometry of excitability and bursting. MIT, Cambridge

    Google Scholar 

  27. Rinzel J (1987) In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences, Springer, Berlin, 1987, pp 267–281

    Google Scholar 

  28. Izhikevich EM (2000) Neural excitability, spiking, and bursting. Int J Bifurc Chaos 10:1171–1266

    Article  Google Scholar 

  29. Kiss IZ, Lv Q, Organ L, Hudson JL (2006) Electrochemical bursting oscillations on a high-dimensional slow subsystem. Phys Chem Chem Phys 8:2707–2715

    Article  CAS  Google Scholar 

  30. Karantonis A, Koutsaftis D, Bredaki M, Koulombi N (2008) Reception and detection of chemical signaling by electrochemical oscillators. Chem Phys Lett 460:182–186

    Article  CAS  Google Scholar 

  31. Franck UF (1989) Periodische Strukturen und Vorgänge in gleichgewichtsfernen physikalisch-chemischen Systemen. Nova acta Leopoldina NF 60:109–131

    CAS  Google Scholar 

  32. Pagitsas M, Diamantopoulou A, Sazou D (2001) Distinction between general and pitting corrosion based on the nonlinear dynamical response of passive iron surfaces perturbed chemically by halides. Electrochem Commun 3:330–335

    Article  CAS  Google Scholar 

  33. Pagitsas M, Diamantopoulou A, Sazou D (2003) A point defect model for the general and pitting corrosion of iron|oxide|electrolyte interface deduced from current oscillations. Chaos Soliton Fract 17:263–275

    Article  CAS  Google Scholar 

  34. Sazou D, Pagitsas M (2003) Non-linear dynamics of the passivity breakdown of iron in acidic solutions. Chaos Soliton Fract 17:505–522

    Article  CAS  Google Scholar 

  35. Pagitsas M, Pavlidou PS, Sazou D (2007) Chlorates induced pitting corrosion of iron in sulfuric acid solutions: an analysis based on current oscillations and a point defect model. Chem Phys Lett 434:63–67

    Article  CAS  Google Scholar 

  36. Pagitsas M, Pavlidou M, Sazou D (2008) Localized passivity breakdown of iron in chlorate- and perchlorate-containing sulphuric acid solutions: a study based on current oscillations and a point defect model. Electrochim Acta 53:4784–4795

    Article  CAS  Google Scholar 

  37. Lou W, Ogura K (1995) Current oscillations observed on a stainless steel electrode in sulfuric acid solutions with and without chromic acid. Electrochim Acta 40:667–672

    Article  CAS  Google Scholar 

  38. Franck UF, FitzHugh R (1961) Periodische Elektrodenprozesse und ihre Beschreibung durch ein mathematisches Modell. Z Elektrochem 65:156–168

    CAS  Google Scholar 

  39. Wang Y, Hudson JL, Jaeger NI (1990) On the Franck-FitzHugh model of the dynamics of iron electrodissolution in sulfuric acid. J Electrochem Soc 137:485–488

    Article  CAS  Google Scholar 

  40. Griffin GL (1984) A simple phase transition model for metal passivation kinetics. J Electrochem Soc 131:18–21

    Article  CAS  Google Scholar 

  41. Talbot JB, Oriani RA (1985) Steady state multiplicity and oscillations in passive film formation. Electrochim Acta 1985:1277–1284

    Article  Google Scholar 

  42. Talbot JB, Oriani RA, DiCarlo M (1985) Application of linear stability and bifurcation analysis to passivation models. J Electrochem Soc 132:1545–1551

    Article  CAS  Google Scholar 

  43. Kado T, Kunitomi N (1991) A model for the current oscillations of iron in sulfuric acid. J Electrochem Soc 138:3312–3321

    Article  CAS  Google Scholar 

  44. Degn H (1968) Theory of electrochemical oscillations. Trans Faraday Soc 545:1348–1358

    Article  Google Scholar 

  45. Koper MTM, Sluyters JH (1993) A mathematical model for current oscillations at the active-passive transition in metal electrodissolution. J Electroanal Chem 347:31–48

    Article  CAS  Google Scholar 

  46. Nechiporuk VV, Petrenko OE (1998) Effect of migration nonequilibrium on bifurcation diagrams (electrochemical dissolution of metals). Russ J Electrochem 34:1158–1161

    CAS  Google Scholar 

  47. Kawczyński AL, Przasnyski M, Baranowski B (1984) Chaotic and periodic current oscillations at constant voltage conditions in the system Cu(s)|CuSO4 + H2SO4(aq)|Cu(s). J Electroanal Chem 179:285–288

    Article  Google Scholar 

  48. Kawczyński AL, Raczyński W, Baranowski B (1988) Analysis of chaotic oscillations in a simple electreochemical system. Z phys Chem Leipzig 269:596–602

    Google Scholar 

  49. Inzelt G (1993) Oscillations of the EQCM frequency response in the course of open-circuit copper dissolution in aqueous solutions of H2SO4 and CuSO4. J Electroanal Chem 348:465–471

    Article  CAS  Google Scholar 

  50. Hedges ES (1926) Periodic phenomena at anodes of copper and silver. J Chem Soc: 1533–1546

    Google Scholar 

  51. Hedges ES (1929) An enquiry into the cause of periodic phenomena in electrolysis. J Chem Soc: 1028–1038

    Google Scholar 

  52. Bonhoeffer KF, Gerischer H (1948) Periodic chemical reactions. V. Anodic behavior of copper in hydrochloric acid. Z Elektrochem 52:149–160

    CAS  Google Scholar 

  53. Cooper RS, Bartlett JH (1958) Convection and film instability copper anodes in hydrochloric acid. J Electrochem Soc 105:109–116

    Article  CAS  Google Scholar 

  54. Cooper JF, Muller RH, Tobias CW (1980) Periodic phenomena during anodic dissolution of copper at high current densities. J Electrochem Soc 127:1734–1744

    Article  Google Scholar 

  55. Lee HP, Nobe K, Pearlstein AJ (1985) Film formation and current oscillations in the electrodissolution of Cu in acidic media. I. Experimental studies. J Electrochem Soc 132:1031–1037

    Article  CAS  Google Scholar 

  56. Pearlstein AJ, Lee HP, Nobe K (1985) Film formation and current oscillations in the electrodissolution of Cu in acidic media. II. Mathematical model. J Electrochem Soc 132:2159–2165

    Article  CAS  Google Scholar 

  57. Bassett MR, Hudson JL (1987) The dynamics of the electrodissolution of copper. Chem Eng Commun 60:145–159

    Article  CAS  Google Scholar 

  58. Bassett MR, Hudson JL (1988) Shil’nikov chaos during copper electrodissolution. J Phys Chem 92:6963–6966

    Article  CAS  Google Scholar 

  59. Bassett MR, Hudson JL (1989) Quasi-periodicity and chaos during an electrochemical reaction. J Phys Chem 93:2731–2737

    Article  CAS  Google Scholar 

  60. Gu ZH, Chen J, Fahidy TZ (1992) The oscillatory behavior of anodic copper dissolution into a NaCl/KSCN electrolyte. Electrochim Acta 37:2637–2644

    Article  CAS  Google Scholar 

  61. Gu ZH, Chen J, Fahidy TZ (1994) The effect of process parameters on the anodic dissolution of copper into Nal/KSCN electrolytes. J Electroanal Chem 367:7–14

    Article  CAS  Google Scholar 

  62. Jacquet PA (1936) On the anodic behavior of copper in aqueous solutions of orthophosphoric acid. Trans Electrochem Soc 69:629–655

    Article  Google Scholar 

  63. Glarum SH, Marshall JH (1985) The anodic dissolution of copper into phosphoric acid. I. Voltammetric and oscillatory behavior. J Electrochem Soc 132:2872–2878

    Article  CAS  Google Scholar 

  64. Glarum SH, Marshall JH (1985) The anodic dissolution of copper into phosphoric acid. II. Impedance behavior. J Electrochem Soc 132:2878–2885

    Article  CAS  Google Scholar 

  65. Albahadily FN, Schell M (1988) An experimental investigation of periodic and chaotic electrochemical oscillations in the anodic dissolution of copper in phosphoric acid. J Chem Phys 88:4312–4319

    Article  CAS  Google Scholar 

  66. Albahadily FN, Ringland J, Schell M (1989) Mixed-mode oscillations in an electrochemical system. I A Farey sequence which does not occur on a torus. J Chem Phys 90:813–821

    Article  CAS  Google Scholar 

  67. Schell M, Albahadily FN (1989) Mixed-mode oscillations in an electrochemical system. II A periodic-chaotic sequence. J Chem Phys 90:822–828

    Article  CAS  Google Scholar 

  68. Bard AJ, Faulkner L (2001) Electrochemical methods. Fundamentals and applications. Wiley, New York

    Google Scholar 

  69. Edwards J (1953) The mechanism of electropolishing of copper in phosphoric acid solutions I. processes preceding the establisment of polishing conditions. J Electrochem Soc 100:189C–194C

    Article  CAS  Google Scholar 

  70. Tsitsopoulos LT, Tsotsis TT, Webster IA (1987) An ellipsometric investigation of reaction rate oscillations during the electrochemical anodization of Cu in H3PO4 solutions: some preliminary results. Surf Sci 191:225–238

    Article  CAS  Google Scholar 

  71. Tsitsopoulos LT, Webster IA, Tsotsis TT (1987) Reaction rate oscillations during the electrochemical anodization of Cu in H3PO4 solutions: XPS and SEM studies. Surf Sci 220:391–406

    Article  Google Scholar 

  72. Doona CJ, Blittersdorf R, Schneider FW (1993) Deterministic chaos arising from homoclinicity in the chlorite thiourea oscillator. J Phys Chem 97:7258–7263

    Article  CAS  Google Scholar 

  73. Hudson JL, Mankin JC (1981) Chaos in the Belousov-Zhabotinskii reaction. J Chem Phys 74:6171–6177

    Article  CAS  Google Scholar 

  74. Swinney HL, Maselko J (1985) Comment on renormalization, unstable manifold, and fractal structure of mode locking. Phys Rev Lett 55:2366–2366

    Article  Google Scholar 

  75. Maselko J, Swinney HL (1986) Complex periodic oscillation in the Belousov-Zhabotinskii reaction. J Chem Phys 85:6430–6441

    Article  CAS  Google Scholar 

  76. Maselko J, Swinney HL (1987) A Farey triangle in the Belousov-Zhabotinskii reaction. Phys Lett A 119:403–406

    Article  CAS  Google Scholar 

  77. Strogatz SH (1994) Nonlinear dynamics and chaos. Perseus, Massachussets

    Google Scholar 

  78. Epstein IR (1989) The role of flow systems in far-from-equilibrium dynamics. J Chem Educ 66:191–195

    Article  CAS  Google Scholar 

  79. Schuster HG, Just W (2005) Deterministic chaos. An introduction. Wiley-VCH, Weinheim, p 139

    Book  Google Scholar 

  80. Kiss IZ, Gáspár V, Nyikos L (1998) Stability analysis of the oscillatory electrodissolution of copper with impedance spectroscopy. J Phys Chem 102:909–914

    Article  CAS  Google Scholar 

  81. Kiss IZ, Kazsu Z, Gáspár V (2009) Scaling relationship for oscillating electrochemical systems: dependence of phase diagram on electrode size and rotation rate. Phys Chem Chem Phys 11:7669–7677

    Article  CAS  Google Scholar 

  82. Koper MTM, Sluyters JH (1991) Electrochemical oscillators: their description through a mathematical model. J Electroanal Chem 303:73–94

    Article  CAS  Google Scholar 

  83. Koper MTM, Gaspard P (1992) The modeling of mixed-mode and chaotic oscillations in electrochemical systems. J Chem Phys 96:7797–7813

    Article  CAS  Google Scholar 

  84. Karantonis A, Bourbos E, Koutsaftis D (2010) Electrochemical resonance: frequency response analysis of the electrodissolution of copper in trifluoroacetic acid close to dynamic instabilities. Chem Phys Lett 490:69–71

    Article  CAS  Google Scholar 

  85. Potkonjak NI, Potkonjak TN, Blagojević SN, Dudić B, Randlejović DV (2010) Current oscillations during the anodic dissolution of copper in trifluoroacetic acid. Corrosion Sci 52:1618–1624

    Article  CAS  Google Scholar 

  86. Hurtado MRF, Sumodjo PTA, Benedetti AV (1993) Electrochemical studies with copper-based alloys open-circuit potential oscillations in alkaline media. J Electrochem Soc 140:1567–1571

    Article  CAS  Google Scholar 

  87. Hoar TP, Mowat JAS (1950) Mechanism of electropolishing. Nature (London) 165:64–65

    Article  CAS  Google Scholar 

  88. Osterwald J, Feller HG (1960) Periodic phenomena at a nickel electrode in sulfuric acid. J Electrochem Soc 107:473–474

    Article  CAS  Google Scholar 

  89. Osterwald J (1962) Zum stabilitätsverhalten stationärer Elektrodenzustände. Electrochim Acta 7:523–532

    Article  CAS  Google Scholar 

  90. Lev O, Wolffberg A, Sheintuch M, Pismen LM (1988) Bifurcations to periodic and chaotic motions in anodic nickel dissolution. Chem Eng Sci 43:1339–1353

    Article  CAS  Google Scholar 

  91. Lev O, Wolffberg A, Pismen LM, Sheintuch M (1989) The structure of complex behavior in anodic nickel dissolution. J Phys Chem 93:1661–1666

    Article  CAS  Google Scholar 

  92. Haim D, Lev O, Pismen LM, Sheintuch M (1992) Modeling periodic and chaotic dynamics in anodic nickel dissolution. J Phys Chem 96:2676–2681

    Article  CAS  Google Scholar 

  93. Koper MTM (1998) Non-linear phenomena in electrochemical systems. J Chem Soc Faraday Trans 94:1369–1378

    Article  CAS  Google Scholar 

  94. Indira KS, Rangarajan SK, Doss KSG (1969) Further studies on periodic phenomena in passivating systems. J Electroanal Chem 21:57–68

    Article  CAS  Google Scholar 

  95. Keddam M, Takenouti H, Yu N (1985) Transpassive dissolution of Ni in acidic sulfate media: a kinetic model. J Electrochem Soc 132:2561–2566

    Article  CAS  Google Scholar 

  96. Doss KSG, Deshmukh D (1976) Electrochemical potential oscillations. The nickel-sulphuric acid system. J Electroanal Chem 70:141–156

    Article  CAS  Google Scholar 

  97. Lev O, Sheintuch M, Yarnitzky H, Pismen LM (1990) Spatial current distribution during nickel anodic dissolution in sulfuric acid. Chem Eng Sci 45:839–847

    Article  CAS  Google Scholar 

  98. Gregori J, García-Jareño JJ, Keddam M, Vicente F (2007) A kinetic interpretaion of a negative time constant in impedance equivalent circuits for the dissolution/passive transition. Electrochim Acta 52:7903–7909

    Article  CAS  Google Scholar 

  99. Scherer J, Ocko BM, Magnussen OM (2003) Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, X-ray scattering, and electrochemical study. Electrochim Acta 48:1169–1191

    Article  CAS  Google Scholar 

  100. Nakamura M, Ikemiya N, Iwasaki A, Suzuki Y, Ito M (2004) Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes. J Electroanal Chem 566:385–391

    Article  CAS  Google Scholar 

  101. Gregori J, García-Jareño JJ, Giménez-Romero D, Vicente F (2005) Kinetic calculations of the Ni anodic dissolution from EIS. J Solid State Electrochem 9:83–90

    Article  CAS  Google Scholar 

  102. Gregori J, García-Jareño JJ, Giménez-Romero D, Vicente F (2006) Calculation of the rate constants of nickel electrodissolution in acid medium from EIS. J Solid State Electrochem 10:920–928

    Article  CAS  Google Scholar 

  103. Koper MTM, Aguda BD (1996) Experimental demonstration of delay and memory effects in the bifurcations of nickel electrodissolution. Phys Rev E 54:960–963

    Article  CAS  Google Scholar 

  104. Habermann R (1979) Slowly varying jump and transition phenomena associated with algebraic bifurcation problem. SIAM J Appl Math 37:69–106

    Article  Google Scholar 

  105. Erneux T, Laplante JP (1989) Jump transition due to a time-dependent bifurcation parameter in the bistable iodate-arsenous acid reaction. J Chem Phys 90:6129–6134

    Article  CAS  Google Scholar 

  106. Baer SM, Erneux T, Rinzel J (1989) The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J Appl Math 49:55–71

    Article  Google Scholar 

  107. Holden L, Erneux T (1993) Slow passage through a Hopf bifurcation: frm oscillations to steady state solutions. SIAM J Appl Math 53:1045–1058

    Article  Google Scholar 

  108. Hudson JL, Bell JC, Jaeger NI (1988) Potentiostatic current oscillations of cobalt electrodes in hydrochloric acid/chromic acid electrolytes. Ber Bunsenges Phys Chem 92:1383–1387

    CAS  Google Scholar 

  109. Sazou D, Pagitsas M, Kokkinidis G (1990) Current oscillations during electrodissolution of a cobalt electrode induced by the presence of nitrate ions in sulphuric acid solutions. J Electroanal Chem 289:217–235

    Article  CAS  Google Scholar 

  110. Sazou D, Pagitsas M (1991) Polarization behaviour of a cobalt rotating disc electrode in sulphuric acid solutions in the absence and presence of chloride ions. J Electroanal Chem 304:171–185

    Article  CAS  Google Scholar 

  111. Sazou D, Pagitsas M (1991) Periodic and aperiodic current oscillations induced by the presence of chloride ions during electrodissolution of a cobalt electrode in sulfuric acid solutions. J Electroanal Chem 312:185–203

    Article  CAS  Google Scholar 

  112. Sazou D, Pagitsas M (1993) Current oscillations associated with pitting corrosion processes induced by iodide ions on the partially passive cobalt surface polarized in sulphuric acid solutions. Electrochim Acta 38:835–845

    Article  CAS  Google Scholar 

  113. Pagitsas M, Sazou D (1995) The effect of a sinusoidal potential perturbation on the active-passive transition region of cobalt in a phosphoric acid solution. J Electroanal Chem 386:89–99

    Article  Google Scholar 

  114. Pagitsas M, Sazou D (1995) Experimental bifurcation analysis of the cobalt/phosphoric acid electrochemical oscillator. Electrochim Acta 40:755–766

    Article  Google Scholar 

  115. Alonzo V, Darchen A, Le Fur E, Pivan JY (2002) Electrosynthesis of vanadophosphate by anodic oxidation of vanadium in phosphoric acid solutions. Electrochem Commun 4:877–880

    Article  CAS  Google Scholar 

  116. Alonzo V, Darchen A, Le Fur E, Pivan JY (2006) Electrochemical behaviour of a vanadium anode in phosphoric acid and phosphate solutions. Electrochim Acta 51:1990–1995

    Article  CAS  Google Scholar 

  117. Gorzkowski MT, Wesołowska A, Jurczakowski R, Ślepski P, Darowicki K, Orlik M (2011) Electrochemical oscillations and bistability during anodic dissolution of vanadium electrode in acidic media—Part I. Experiment. J Solid State Electrochem 15:2311–2320. doi:10.1007/s10008-011-1463-z

    Article  CAS  Google Scholar 

  118. Gorzkowski MT, Orlik M (2011) Electrochemical oscillations and bistability during anodic dissolution of vanadium electrode in acidic media—Part II. The model. J Solid State Electrochem 15:2321–2330. doi:10.1007/s10008-011-1464-y

    Article  CAS  Google Scholar 

  119. Gilbertson LI, Fertner WO (1942) Trans Electrochem Soc 81:199

    Article  Google Scholar 

  120. Feancis HT, Colner WH (1950) Cyclic phenomena observed in the electropolishing of silver. J Electrochem Soc 97:237–240

    Article  Google Scholar 

  121. Lal H, Thirsk HR, Wynne-Jones WFK (1951) A study of the behaviour of polarized electrodes. Part I. The silver/silver halide system. Trans Faraday Soc 47:70–77

    Article  CAS  Google Scholar 

  122. Lal H, Thirsk HR, Wynne-Jones WFK (1951) The anodic polarization of silver in halide solutions. Part II. Periodic phenomena occurring during polarization. Trans Faraday Soc 47:999–1006

    Article  CAS  Google Scholar 

  123. Corcoran SG, Sieradzki K (1992) Chaos during a growth of an articficial pit. J Electrochem Soc 139:1568–1573

    Article  CAS  Google Scholar 

  124. Franck UF (1958) Instabilitätserscheinungen an passiviebaren Metallen. Z Elektrochem 62:649–655

    CAS  Google Scholar 

  125. Vetter K (1967) Electrochemical kinetics. Academic, New York

    Google Scholar 

  126. Podestá JJ, Piatti RCV, Arviá AJ (1979) Periodic current oscillations at the gold/acid aqueous interfaces induced by HCl additions. Electrochim Acta 24:633–638

    Article  Google Scholar 

  127. Diard JP, Le Gorrec B, Saint-Aman E (1983) Etude des structures de dissolution anodique de l or en milieu acide. Electrochim Acta 28:1211–1213

    Article  CAS  Google Scholar 

  128. Li ZL, Wu TH, Niu ZJ, Huang W, Nie HD (2004) In situ Raman spectroscopic studies of the current oscillations during gold electrodissolution in HCl solutions. Electrochem Commun 6:44–48

    Article  CAS  Google Scholar 

  129. Mao BW, Ren BM, Cai XW, Xiong LH (1995) Electrochemical oscillatory behavior under a scanning microscopic configuration. J Electroanal Chem 394:155–160

    Article  Google Scholar 

  130. Zheng J, Huang W, Chen S, Niu Z, Li Z (2006) New oscillatory phenomena during gold electrodissolution in sulfuric acid containing Br or in concentrated HCl. Electrochem Commun 8:600–604

    Article  CAS  Google Scholar 

  131. Bargeron CB, Givens RB (1977) Source of oscillations in the anode current during the potentiostatic pitting of aluminum. J Electrochem Soc 124:1230–1232

    Article  CAS  Google Scholar 

  132. Wilhelmsen W, Arnesen T, Hasvold Ø, Størkersen WJ (1991) The electrochemical behavior of Al-In alloys in alkaline electrolytes. Electrochim Acta 36:79–85

    Article  CAS  Google Scholar 

  133. Lee W, Kim JC, Gösele U (2010) Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv Funct Mater 20:21–27

    Article  CAS  Google Scholar 

  134. Grauer R, Wehr P, Engell HJ (1969) Electron-optical and electrochemical investigation into the passivation behavior of fine lead in hot concentrated sulfuric acid. Werkst Korros 20:94–98

    Article  CAS  Google Scholar 

  135. Abd El Aal EE (1992) Effect of chlorate and perchlorate anions on lead passivity in NaOH solutions under galvanostatic conditions. Corrosion 48:482–488

    Article  CAS  Google Scholar 

  136. Bhaskara Rao ML (1967) Electrochemical studies on lead in organic electrolytes. J Electrochem Soc 114:665–668

    Article  Google Scholar 

  137. Hull MN, Ellison JE, Toni JE (1970) The anodic behavior of zinc electrodes in potassium hydroxide electrolytes. J Electrochem Soc 117:192–198

    Article  CAS  Google Scholar 

  138. Hull MN, Toni JE (1971) Formation and reduction of films on amalgamated and non-amalgamated zinc electrodes in alkaline solutions. Trans Faraday Soc 67:1128–1136

    Article  CAS  Google Scholar 

  139. Podesta JJ, Piatti RCV, Arvia AJ (1982) Comparative electron microscopy (SEM) examination of Fe, Au and Zn electrodes surfaces polarized in different regions of potentiostatic I/E behavior. Corrosion NACE 38:599

    Article  CAS  Google Scholar 

  140. McKubre MCH, Macdonald DD (1981) The dissolution and passivation of zinc in concentrated aqueous hydroxide. J Electrochem Soc 128:524–530

    Article  CAS  Google Scholar 

  141. Frackowiak E, Kiciak M (1988) Application of the rotating disk electrode for the investigation of polycrystalline zinc in concentrated alkaline solutions with admixture of polyethylene glycol. Electrochim Acta 33:441–443

    Article  CAS  Google Scholar 

  142. Shams El Din AM, Abd El Wahab FM (1964) On the anodic passivity of tin in alkaline solutions. Electrochim Acta 9:883–896

    Article  CAS  Google Scholar 

  143. Shams El Din AM, Kamel LA (1972) Studies on the anodic and cathodic polarization of amalgams—V. The behaviour of tin amalgams in alkaline solutions. Electrochim Acta 17:491–501

    Article  Google Scholar 

  144. Strirrup BN, Hampson NA (1976) Anodic passivation of Sn in sodium hydroxide solutions. J Electroanal Chem 67:45–56

    Article  Google Scholar 

  145. Drogowska M, Brossard L, Menard H (1991) Influence of chloride ions on the anodic dissolution of tin in bicarbonate and phosphate solutions at pH 8. J Electrochem Soc 138:1243–1250

    Article  CAS  Google Scholar 

  146. Vicentini B, Sinigaglia D, Taccani G (1975) Crevice corrosion of titanium. Behaviour of galvanic cell between shielded and unshielded titanium in sulphuric acid. Corrosion Sci 15:479–492

    Article  CAS  Google Scholar 

  147. Okada T (1981) The pitting potential of titanium in bromide solutions. Dengi Kagaku Oyobi Kogyo Butsuri Kagaku 49:584

    CAS  Google Scholar 

  148. Warczak M, Sadkowski A (2009) Oscillatory regime of titanium anodization under voltage control. Electrochem Commun 11:1733–1735

    Article  CAS  Google Scholar 

  149. Ammar IA, Khalil MW (1971) Behavior of bismuth as valve metal in phosphate, borate, benzoate and tartrate solutions. J Electroanal Chem 32:373–386

    Article  CAS  Google Scholar 

  150. Galushko VP, Zavgorodnaya EF, Podol’skaya NV, Tukhaya OK (1972) Cadmium behavior during an anodic oxidation in alkaline solution. Ukr Khim Zh 38:432

    CAS  Google Scholar 

  151. Kadaner LI, Fedchenko VM, Ermolov IB (1981) Periodic phenomena in the electrochemical dissolution of niobium under alternating current conditions. Elektrokhimiya 17:138

    CAS  Google Scholar 

  152. Engelgardt GR, Dikusar AI (1986) Thermokinetic instability of electrode processes: part I. Theoretical analysis. J Electroanal Chem 207:1–9

    Article  CAS  Google Scholar 

  153. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289:98–101. doi:10.1126/science.289.5476.98

    Article  CAS  Google Scholar 

  154. Schöll E (2005) Nonlinear spatio-temporal dynamics and chaos in semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  155. Josseaux P, Micheau JC, Kirsch de Mesmaeker A (1985) Photocurrent oscillations at photoanodes of CdS films. Electrochim Acta 30:1093–1094

    Article  CAS  Google Scholar 

  156. Marcu V, Tenne R (1988) Photocurrent oscillations in the CdTe electrolyte systems. J Phys Chem 92:7089–7092

    Article  CAS  Google Scholar 

  157. Marcu V, Strehblow HH (1991) Current oscillations of Cd0.2Hg0.8Te in a Na2S-CsOH solution. Electrochim Acta 36:869–875

    Article  CAS  Google Scholar 

  158. Turner DR (1958) Electropolishing silicon in hydrofluoric acid solutions. J Electrochem Soc 105:402–408

    Article  CAS  Google Scholar 

  159. Gerischer H, Lübke M (1988) Electrolytic growth and dissolution of oxide layers on silicon in aqueous solutions of fluorides. Ber Bunsenges phys Chem 92:573–577

    CAS  Google Scholar 

  160. Chazalviel JN, Etman E, Ozanam F (1991) A voltammetric study of the anodic dissolution of p-Si in fluoride electrolytes. J Electroanal Chem 297:533–540

    Article  CAS  Google Scholar 

  161. Ozanam F, Chazalviel JN, Radi A, Etman M (1991) Current oscillations in the anodic dissolution of silicon in fluoride electrolytes. Ber Bunsenges Phys Chem 95:98–101

    Article  CAS  Google Scholar 

  162. Ozanam F, Chazalviel JN, Radi A, Etman M (1992) Resonant and nonresonant behavior of the anodic dissolution of silicon in fluoride media. An impedance study. J Electrochem Soc 139:2491–2501

    Article  Google Scholar 

  163. Chazalviel JN, Ozanam F (1992) A theory for the resonant response of an electrochemical system: self-oscillating domains, hidden oscillation, and synchronization impedance. J Electrochem Soc 139:2501–2508

    Article  CAS  Google Scholar 

  164. Stumper J, Greef R, Peter LM (1991) Current oscillations during anodic dissolution of p-Si in ammonium fluoride: an investigation using ring-disc voltammtetry and ellipsometry. J Electroanal Chem 310:445–452

    Article  CAS  Google Scholar 

  165. Blackwood DJ, Borazio A, Greef R, Peter LM, Stumper J (1992) Electrochemical and optical studies of silicon dissolution in ammonium fluoride solutions. Electrochim Acta 37:889–896

    Article  CAS  Google Scholar 

  166. Lewerenz HJ, Schlichthörl G (1992) Light-induced oscillating reactions of silicon in ammonium fluoride solutions: part 1. Simultaneous photocurrent and excess microwave reflectivity measurements. J Electroanal Chem 327:85–92

    Article  CAS  Google Scholar 

  167. Lewerenz HJ (1992) Anodic oxides on silicon. Electrochim Acta 37:847–864

    Article  CAS  Google Scholar 

  168. Lewerenz HJ, Aggour M (1993) On the origin of photocurrent oscillation at Si electrodes. J Electroanal Chem 351:159–168

    Article  CAS  Google Scholar 

  169. Ozanam F, Chazalviel JN (1993) In-situ infrared characterization of the electrochemical dissolution of silicon in a fluoride electrolyte. J Electron Spectrosc Relat Phenom 64(65):395–402

    Article  Google Scholar 

  170. Hassan HH, Sculfort JL, Etman M, Ozanam F, Chazalviel JN (1995) Kinetic and diffusional limitations to the anodic dissolution of p-Si in fluoride media. J Electroanal Chem 380:55–61

    Article  Google Scholar 

  171. Nast O, Rauscher S, Jungblut H, Lewerenz HJ (1998) Micromorphology changes of silicon oxide on Si(111) during current oscillations: a comparative in situ AFM and FTIR study. J Electroanal Chem 422:169–174

    Google Scholar 

  172. Ozanam F, Blanchard N, Chazalviel JN (1993) Microscopic, self-oscillating domains at the silicon surface during its anodic dissolution in a fluoride electrolyte. Electrochim Acta 38:1627–1630

    Article  CAS  Google Scholar 

  173. Chazalviel JN, Ozanam F (2010) Current oscillations in the anodic dissolution of silicon: on the origin of a sustained oscillation on the macroscopic scale. Electrochim Acta 55:656–665

    Article  CAS  Google Scholar 

  174. Safi M, Chazalviel JN, Cherkaoui M, Belaïdi A, Gorochov O (2002) Etching of n-type silicon in (HF+oxidant) solutions: in situ characterization of surface chemistry. Electrochim Acta 47:2573–2581

    Article  CAS  Google Scholar 

  175. Amin MA, Frey S, Ozanam F, Chazalviel JN (2008) Macromorphologies in electrochemically formed porous silica. Electrochim Acta 53:4485–4494

    Article  CAS  Google Scholar 

  176. Slimani A, Iratni A, Chazalviel JN, Gabouze N, Ozanam F (2009) Experimental study of macropore formation in p-type silicon in a fluoride solution and the transition between macropore formation and electropolishing. Electrochim Acta 54:3139–3144

    Article  CAS  Google Scholar 

  177. Föll H, Carstensen J, Christophersen M, Hasse G (2000) A new view of silicon electrochemistry. Phys Stat Sol A 182:7–16

    Article  Google Scholar 

  178. Hasse G, Christophersen M, Carstensen J, Föll H (2000) New insights into Si electrochemistry and pore growth by transient measurements and impedance spectroscopy. Phys Stat Sol A 182:23–29

    Article  CAS  Google Scholar 

  179. Lölkes S, Christophersen M, Langa S, Carstensen J, Föll H (2003) Selforganized formation of crystallographically oriented octahedral cavities during electrochemical pore etching. Mater Sci Eng B101:159–163

    Article  CAS  Google Scholar 

  180. Christophersen M, Langa S, Carstensen J, Tiginyanu IM, Föll H (2003) A comparison of pores in silicon and pores in III-V compounds materials. Phys Stat Sol A 197:197–203

    Article  CAS  Google Scholar 

  181. Chazalviel JN, Wehrspohn RB, Ozanam F (2000) Electrochemical preparation of porous semiconductors: from phenomenology to understanding. Mater Sci Eng B69–B70:1–10

    Article  Google Scholar 

  182. Parkhutik VP, Sasano J, Ogata Y, Matveeva E (2003) Oscillatory electrochemical reaction at corroding silicon surface. Proc SPIE 5114:396–405

    Article  CAS  Google Scholar 

  183. Parkhutik VP (2006) Oscillations of open-circuit potential during immersion plating of silicon in CuSO4/HF solutions. Russ J Electrochem 42:512–522

    Article  CAS  Google Scholar 

  184. Lehmann V (2002) Electrochemistry of silicon. Instrumentation, science, materials and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlik, M. (2012). Temporal Instabilities in Corrosion Processes. In: Self-Organization in Electrochemical Systems I. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27673-6_6

Download citation

Publish with us

Policies and ethics