Skip to main content

Randomized Group Testing Both Query-Optimal and Minimal Adaptive

  • Conference paper
SOFSEM 2012: Theory and Practice of Computer Science (SOFSEM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7147))

Abstract

The classical group testing problem asks to determine at most d defective elements in a set of n elements, by queries to subsets that return Yes if the subset contains some defective, and No if the subset is free of defectives. By the entropy lower bound, \(\log_2\sum_{i=0}^d{n\choose i}\) tests, which is essentially dlog2 n, are needed at least. We devise group testing strategies that combine two features: They achieve this optimal query bound asymptotically, with a factor 1 + o(1) as n grows, and they work in a fixed number of stages of parallel queries. Our strategies are randomized and have a controlled failure probability, i.e., constant but arbitrarily small. We consider different settings (known or unknown d, probably correct or verified outcome), and we aim at the smallest possible number of stages. In particular, 2 stages are sufficient if d grows slowly enough with n, and 4 stages are sufficient if d = o(n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Gal, I.: An Upper Bound on the Weight-Balanced Testing Procedure with Multiple Testers. IIE Trans. 36, 481–493 (2004)

    Article  Google Scholar 

  2. Chen, H.B., Hwang, F.K.: Exploring the Missing Link Among d-Separable, -Separable and d-Disjunct Matrices. Discr. Appl. Math. 155, 662–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, Y., Du, D.Z.: New Constructions of One- and Two-Stage Pooling Designs. J. Comp. Biol. 15, 195–205 (2008)

    Article  MathSciNet  Google Scholar 

  4. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective Families, Superimposed Codes, and Broadcasting on Unknown Radio Networks. In: SODA 2001, pp. 709–718. ACM/SIAM (2001)

    Google Scholar 

  5. Cormode, G., Muthukrishnan, S.: What’s Hot and What’s Not: Tracking Most Frequent Items Dynamically. ACM Trans. Database Systems 30, 249–278 (2005)

    Article  Google Scholar 

  6. Damaschke, P., Sheikh, M.A.: Competitive Group Testing and Learning Hidden Vertex Covers with Minimum Adaptivity. Discr. Math. Algor. Appl. 2, 291–311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Damaschke, P., Muhammad, A.S.: Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 117–130. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group Testing Problems. SIAM J. Comp. 34, 1253–1270 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Bonis, A., Vaccaro, U.: Constructions of Generalized Superimposed Codes with Applications to Group Testing and Conflict Resolution in Multiple Access Channels. Theor. Comp. Sc. 306, 223–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dorfman, R.: The Detection of Defective Members of Large Populations. The Annals of Math. Stat. 14, 436–440 (1943)

    Article  Google Scholar 

  11. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. Series on Appl. Math., vol. 18. World Scientific (2006)

    Google Scholar 

  12. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes. SIAM J. Comp. 36, 1360–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodrich, M.T., Hirschberg, D.S.: Improved Adaptive Group Testing Algorithms with Applications to Multiple Access Channels and Dead Sensor Diagnosis. J. Comb. Optim. 15, 95–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassin, R.: A Dichotomous Search for a Geometric Random Variable. Oper. Res. 32, 423–439 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, Q.M., Gerchak, Y., Grosfeld-Nir, A.: Optimal Inspection Order When Process Failure Rate is Constant. Int. J. Reliability, Quality and Safety Eng. 3, 25–41 (1996)

    Article  Google Scholar 

  16. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 40, 1098–1101 (1952)

    Article  MATH  Google Scholar 

  17. Iwen, M.A., Tewfik, A.H.: Adaptive Group Testing Strategies for Target Detection and Localization in Noisy Environments. IMA Preprint Series no. 2311. Univ. of Minnesota (2010)

    Google Scholar 

  18. Kahng, A.B., Reda, S.: New and Improved BIST Diagnosis Methods from Combinatorial Group Testing Theory. IEEE Trans. CAD of Integr. Circuits and Systems 25, 533–543 (2006)

    Article  Google Scholar 

  19. Kainkaryam, R.M., Bruex, A., Gilbert, A.C., Schiefelbein, J., Woolf, P.J.: poolMC: Smart Pooling of mRNA Samples in Microarray Experiments. BMC Bioinf. 11, 299 (2010)

    Article  Google Scholar 

  20. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Boston (2006)

    Google Scholar 

  21. Kleitman, D.: On a Conjecture of Erdös–Katona on Commensurable Pairs Among Subsets of an n–Set. In: Erdös, P., Katona, G. (eds.) Theory of Graphs, Colloq. Proc., pp. 215–218. Akademiai Kiado, Budapest (1968)

    Google Scholar 

  22. Lubell, D.: A Short Proof of Sperner’s Lemma. J. Comb. Theory 1, 299 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mézard, M., Toninelli, C.: Group Testing With Random Pools: Optimal Two-Stage Algorithms. IEEE Trans. Info. Th. 57, 1736–1745 (2011)

    Article  MathSciNet  Google Scholar 

  24. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press (1995)

    Google Scholar 

  25. Schlaghoff, J., Triesch, E.: Improved Results for Competitive Group Testing. Comb. Prob. and Comp. 14, 191–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Spencer, J.: Minimal Completely Separating Systems. J. Combin. Theory 8, 446–447 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Zeitschrift 27, 544–548 (1928) (in German)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damaschke, P., Muhammad, A.S. (2012). Randomized Group Testing Both Query-Optimal and Minimal Adaptive. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27660-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27659-0

  • Online ISBN: 978-3-642-27660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics