Skip to main content

A Program-Size Complexity Measure for Mathematical Problems and Conjectures

  • Chapter
Computation, Physics and Beyond (WTCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7160))

Included in the following conference series:

Abstract

Cristian Calude et al. in [5] have recently introduced the idea of measuring the degree of difficulty of a mathematical problem (even those still given as conjectures) by the length of a program to verify or refute the statement. The method to evaluate and compare problems, in some objective way, will be discussed in this note. For the practitioner, wishing to apply this method using a standard universal register machine language, we provide (for the first time) some “small” core subroutines or library for dealing with array data structures. These can be used to ease the development of full programs to check mathematical problems that require more than a predetermined finite number of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calude, C.S.: Information and Randomness: An Algorithmic Perspective, 2nd edn. Revised and Extended. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  2. Calude, C.S., Calude, E.: Evaluating the Complexity of Mathematical Problems. Part 1. Complex Systems 18, 267–285 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Calude, C.S., Calude, E.: Evaluating the Complexity of Mathematical Problems. Part 2. Complex Systems 18, 387–401 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Calude, C.S., Calude, E.: The Complexity of the Four Colour Theorem. LMS J. Comput. Math. 13, 414–425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calude, C.S., Calude, E., Dinneen, M.J.: A new measure of the difficulty of problems. Journal of Multiple-Valued Logic and Soft Computing 12, 285–307 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Calude, C.S., Calude, E., Svozil, K.: The complexity of proving chaoticity and the Church-Turing Thesis. Chaos 20, 1–5 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calude, C.S., Dinneen, M.J.: Exact approximations of Omega numbers. Intl. J. of Bifurcation and Chaos 17(6), 1937–1954 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calude, C.S., Dinneen, M.J., Shu, C.-K.: Computing a glimpse of randomness. Experimental Mathematics 11(2), 369–378 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Calude, C.S., Jürgensen, H., Legg, S.: Solving Finitely Refutable Mathematical Problems. In: Calude, C.S., Păun, G. (eds.) Finite Versus Infinite. Contributions to an Eternal Dilemma, pp. 39–52. Springer, London (2000)

    Chapter  Google Scholar 

  10. Calude, E.: The complexity of Riemann’s Hypothesis. Journal for Multiple-Valued Logic and Soft Computing (December 2010) (accepted)

    Google Scholar 

  11. Calude, E.: Fermat’s Last Theorem and chaoticity. Natural Computing (accepted, June 2011)

    Google Scholar 

  12. Calude, E.: The complexity of Goldbach’s Conjecture and Riemann’s Hypothesis, Report CDMTCS-370, Centre for Discrete Mathematics and Computer Science, p. 9 (2009)

    Google Scholar 

  13. Chaitin, G.J.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1987) (third printing, 1990)

    Book  MATH  Google Scholar 

  14. Dinneen, M.J., Gimel’farb, G., Wilson, M.C.: Introduction to Algorithms, Data Structures and Formal Languages, 2nd edn., p. 264. Pearson Education, New Zealand (2009)

    Google Scholar 

  15. Knuth, D.E.: The Art of Computer Programming, 1st edn. Combinatorial Algorithms, Part 1, vol. 4A, p. xv+883. Addison-Wesley, Reading (2011) ISBN 0-201-03804-8

    Google Scholar 

  16. Hertel, J.: On the Difficulty of Goldbach and Dyson Conjectures, Report CDMTCS-367, Centre for Discrete Mathematics and Theoretical Computer Science, p. 15 (2009)

    Google Scholar 

  17. Hilbert, D.: Mathematical Problems. Bull. Amer. Math. Soc. 8, 437–479 (1901-1902)

    Article  MathSciNet  MATH  Google Scholar 

  18. Weisstein, E.W.: Chaitin’s Constant. From MathWorld–A Wolfram Web Resource (2011), http://mathworld.wolfram.com/ChaitinsConstant.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dinneen, M.J. (2012). A Program-Size Complexity Measure for Mathematical Problems and Conjectures. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27654-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27653-8

  • Online ISBN: 978-3-642-27654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics