Skip to main content

Mathematics, Metaphysics and the Multiverse

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7160))

Abstract

It would be nice if science answered all questions about our universe. In the past, mathematics has not just provided the language in which to frame suitable scientific answers, but was also able to give us clear indications of its own limitations. The former was able to deliver results via an ad hoc interface between theory and experiment. But to characterise the power of the scientific approach, one needs a parallel higher-order understanding of how the working scientist uses mathematics, and the development of an informative body of theory to clarify and expand this understanding. We argue that this depends on us selecting mathematical models which take account of the ‘thingness’ of reality, and puts the mathematics in a correspondingly rich information-theoretic context. The task is to restore the role of embodied computation and its hierarchically arising attributes. The reward is an extension of our understanding of the power and limitations of mathematics, in the mathematical context, to that of the real world. Out of this viewpoint emerges a widely applicable framework, with not only epistemological, but also ontological consequences – one which uses Turing invariance and its putative breakdowns to confirm what we observe in the universe, to give a theoretical status to the dichotomy between quantum and relativistic domains, and which removes the need for many-worlds and related ideas. In particular, it is a view which confirms that of many quantum theorists – that it is the quantum world that is ‘normal’, and our classical level of reality which is strange and harder to explain. And which complements fascinating work of Cristian Calude and his collaborators on the mathematical characteristics of quantum randomness, and the relationship of ‘strong determinism’ to computability in nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Letters 49, 1804–1807 (1982)

    Article  MathSciNet  Google Scholar 

  2. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken experiment; a new violation of Bell’s inequalities. Phys. Rev. Letters 49, 91 (1982)

    Article  Google Scholar 

  3. Bell, J.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  4. Bell, J.S.: Einstein-Podolsky-Rosen experiments. In: Proceedings of the Symposium on Frontier Problems in High Energy Physics, Pisa, pp. 33–45 (June 1976)

    Google Scholar 

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, I and II. Phys. Rev. 85, 166–193 (1952); reprinted in Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Born, M.: The Restless Universe. Blackie & Son, London (1935)

    Google Scholar 

  7. Born, M.: Natural Philosophy of Cause and Chance, Clarendon Press (1949)

    Google Scholar 

  8. Callender, C. (ed.): The Oxford Handbook of Philosophy of Time. Oxford University Press, Oxford (2011)

    Google Scholar 

  9. Calude, C., Campbell, D.I., Svozil, K., Stefanescu, D.: Strong determinism vs. computability. In: DePauli-Schimanovich, W., Köhler, E., Stadler, F. (eds.) The Foundational Debate: Complexity and Constructivity in Mathematics and Physics, pp. 115–131. Kluwer, Dordrecht (1995)

    Chapter  Google Scholar 

  10. Calude, C.: Algorithmic Randomness, Quantum Physics, and Incompleteness. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 1–17. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Calude, C.S., Svozil, K.: Quantum randomness and value indefiniteness. Advanced Science Letters 1, 165–168 (2008)

    Article  Google Scholar 

  12. Cooper, S.B.: Clockwork or Turing U/universe? - Remarks on causal determinism and computability. In: Cooper, S.B., Truss, J.K. (eds.) Models and Computability. London Mathematical Society Lecture Notes Series, vol. 259, pp. 63–116. Cambridge University Press, Cambridge (1999)

    Chapter  Google Scholar 

  13. Cooper, S.B.: Upper cones as automorphism bases. Siberian Advances in Math. 9, 1–61 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D.C (2004)

    MATH  Google Scholar 

  15. Cooper, S.B.: Definability as hypercomputational effect. Applied Mathematics and Computation 178, 72–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cooper, S.B.: How Can Nature Help Us Compute? In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 1–13. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Cooper, S.B.: Computability and emergence. In: Gabbay, D.M., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic I. Logics for the XXIst Century. Springer International Mathematical Series, vol. 4, pp. 193–231 (2006)

    Google Scholar 

  18. Cooper, S.B., Odifreddi, P.: Incomputability in Nature. In: Cooper, S.B., Goncharov, S.S. (eds.) Computability and Models, pp. 137–160. Kluwer Academic/Plenum, New York, Boston, Dordrecht, London, Moscow (2003)

    Chapter  Google Scholar 

  19. Einstein, A.: Autobiographical Notes. In: Schilpp, P. (ed.) Albert Einstein: Philosopher-Scientist. Open Court Publishing (1969)

    Google Scholar 

  20. Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  Google Scholar 

  21. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley (1965)

    Google Scholar 

  22. Funtowicz, S.O., Ravetz, J.R.: A New Scientific Methodology for Global Environmental Issues. In: Costanza, R. (ed.) Ecological Economics: The Science and Management of Sustainability, pp. 137–152. Columbia University Press, New York (1991)

    Google Scholar 

  23. Jaffe, A.: Quantum Theory and Relativity. In: Doran, R.S., Moore, C.C., Zimmer, R.J. (eds.) Contemporary Mathematics Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, vol. 449, pp. 209–246 (2008)

    Google Scholar 

  24. Kleene, S.C.: Recursive functionals and quantifiers of finite types I. Trans. of the Amer. Math. Soc. 91, 1–52 (1959)

    MathSciNet  MATH  Google Scholar 

  25. Kleene, S.C.: Recursive Functionals and Quantifiers of Finite Types II. Trans. of the Amer. Math. Soc. 108, 106–142 (1963)

    MathSciNet  MATH  Google Scholar 

  26. Kreisel, G.: Some reasons for generalizing recursion theory. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium, vol. 69, pp. 139–198. North-Holland, Amsterdam (1971)

    Google Scholar 

  27. Kuhn, T.S.: The Structure of Scientific Revolutions, 3rd edn. University of Chicago Press, Chicago (1996)

    Book  Google Scholar 

  28. Maudlin, T.: Quantum Non-Locality & Relativity: Metaphysical Intimations of Modern Physics, 3rd edn. Wiley-Blackwell, Malden (2011)

    Book  Google Scholar 

  29. Meinhardt, H.: The Algorithmic Beauty of Sea Shells, 4th edn. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  30. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  31. Penrose, R.: Quantum physics and conscious thought. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications: Essays in honour of David Bohm, pp. 105–120. Routledge & Kegan Paul, London, New York

    Google Scholar 

  32. Post, E.L.: Degrees of recursive unsolvability: preliminary report (abstract). Bull. Amer. Math. Soc. 54, 641–642 (1948)

    Google Scholar 

  33. Richards, B.: Turing, Richards and Morphogenesis. The Rutherford Journal 1 (2005), http://www.rutherfordjournal.org/article010109.html

  34. Rieper, E., Anders, J., Vedral, V.: Entanglement at the quantum phase transition in a harmonic lattice. New J. Phys. 12, 025017 (2010)

    Article  Google Scholar 

  35. Slaman, T.A.: Degree structures. In: Proceedings of the International Congress of Mathematicians, Kyoto, pp. 303–316 (1990/1991)

    Google Scholar 

  36. Smolin, L.: The Trouble With Physics: The Rise of String Theory, the Fall of Science and What Comes Next. Allen Lane/Houghton Mifflin, London, New York (2006)

    MATH  Google Scholar 

  37. Taleb, N.N.: The Black Swan. Allen Lane, London (2007)

    Google Scholar 

  38. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–265 (1936/37); reprinted in A.M. Turing, Collected Works: Mathematical Logic, pp. 18–53

    MathSciNet  MATH  Google Scholar 

  39. Turing, A.: Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45, 161–228 (1939); reprinted in A.M. Turing, Collected Works: Mathematical Logic, pp. 81–148

    Article  MathSciNet  MATH  Google Scholar 

  40. Turing, A.M.: The Chemical Basis of Morphogenesis. Phil. Trans. of the Royal Society of London. Series B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  41. van Rijsbergen, K.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  42. White, M.: Isaac Newton – The Last Sorcerer. Fourth Estate, London (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooper, S.B. (2012). Mathematics, Metaphysics and the Multiverse. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27654-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27653-8

  • Online ISBN: 978-3-642-27654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics