Skip to main content

Some Transfinite Generalisations of Gödel’s Incompleteness Theorem

  • Chapter
  • 933 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7160))

Abstract

Gödel’s incompleteness theorem can be seen as a limitation result of usual computing theory: it does not exist a (finite) software that takes as input a first order formula on the integers and decides (after a finite number of computations and always with a right answer) whether this formula is true or false. There are also many other limitations of usual computing theory that can be seen as generalisations of Gödel incompleteness theorem: for example the halting problem, Rice theorem, etc. In this paper, we will study what happens when we consider more powerful computing devices: these “transfinite devices” will be able to perform α classical computations and to use α bits of memory, where α is a fixed infinite cardinal. For example, \(\alpha = \aleph _0\,\) (the countable cardinal, i.e. the cardinal of ℕ), or \(\alpha =\mathfrak{C}\) (the cardinal of ℝ). We will see that for these “transfinite devices” almost all Gödel’s limitations results have relatively simple generalisations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calude, C., Jürgensen, H., Zimand, M.: Is independence an exception? Appl. Math. Comput. 66, 63–76 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Calude, C.S., Jürgensen, H.: Is complexity a source of incompletness? Advances in Applied Mathematics 35, 1–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calude, C.S., Rudeanu, S.: Proving as a computable procedure. Fundamenta Informaticae 64(1-4), 43–52 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Calude, C.S., Staiger, L.: A Note on Accelerated Turing Machines. Math. Struct. in Comp. Sciences 20, 1011–1017 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graham, L., Kantor, J.M.: Naming Infinity. The Belknap Press of Harward University Press (2009)

    Google Scholar 

  6. Grim, P.: The Incomplete Universe, Totality, Knowledge and Truth. A Bradford Book, The MIT Press (1991)

    Google Scholar 

  7. Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic Logic 65(2), 567–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Knuth, D.: Surreal Numbers: How two ex-student turned to pure mathematics and found total happiness. Addison-Wesley (1974)

    Google Scholar 

  9. Koepke, P.: Turing Computations on Ordinals. The Bulletin of Symbolic Logic 11(3), 377–397 (2005)

    Article  MATH  Google Scholar 

  10. Koepke, P., Koerwien, M.: Ordinal Computations. Mathematical Structures in Computer Science 16(5), 867–884 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mendelson: Introduction to Mathematical Logic. Wadsworth and Brooks/Cole Advanced Books of Software

    Google Scholar 

  12. Odifreddi, P.G.: Classical Recursion Theory. Elsevier (1989)

    Google Scholar 

  13. Patarin, J.: Logique Mathématique et Théorie des Ensembles. Polycopié de cours publié par l’École Centrale de Paris puis l’Université de Versailles-Saint-Quentin (1991)

    Google Scholar 

  14. Patarin, J.: Transfinite Cryptography. In: HyperNet 2010, Tokyo (2010)

    Google Scholar 

  15. Syropoulos, A.: Hypercomputation. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  16. Welch, P.D.: Turing Unbound: Transfinite Computation. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 768–780. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Woodruff, D., van Dijk, M.: Cryptography in an Unbounded Computational Model. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 149–164. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patarin, J. (2012). Some Transfinite Generalisations of Gödel’s Incompleteness Theorem. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27654-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27653-8

  • Online ISBN: 978-3-642-27654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics