Skip to main content

Basic Principles of Probe Beam Deflection Techniques

  • Chapter
  • First Online:
Laser Techniques for the Study of Electrode Processes

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 864 Accesses

Abstract

The theoretical framework of probe beam deflection (PBD) techniques is described. First, the optical principles underlying the measurement are discussed. Then, the analytical solutions are presented for electrochemical systems subjected to different potentials and current perturbations. Among them are potential pulses (chronodeflectometry), current pulse, and sinusoidal perturbations. The behavior of continuous and discontinuous processes is discussed. The possibility to study multiflux processes by chronodeflectometry is explored. New techniques, such as normal pulse voltadeflectometry (NPVD) and differential pulse voltadeflectometry (DPVD), are proposed. Then, different approaches used to simulate or process the probe beam deflection data measured along cyclic voltammograms are discussed. Those include digital simulation, Laplace transform, and convolution. Finally, a typical experimental setup for PBD is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The interface is usually planar; however, spherical or cylindrical solids can be used. The only difference is the geometry of the interaction between probe beam and the interface.

  2. 2.

    In principle, any geometry of the electrode could be used. The planar case is described here for the sake of simplicity.

References

  1. Rudnicki JD, McLarnon FR, Cairns EJ (1991) In situ characterization of electrode processes by photothermal deflection spectroscopy. In: Varma R, Selman JR (eds) Techniques for characterization of electrodes and electrochemical processes. Plenum, New York

    Google Scholar 

  2. Alda J (2003) Laser and Gaussian beams propagation and transformation. In: Encyclopedia of optical engineering. Marcel Dekker, New York

    Google Scholar 

  3. Rudnicki JD, Brisard GM, Gasteiger HA, Russo RE, McLarnon FR, Cairns EJ (1993) Effect of the supporting electrolyte and beam diameter on probe beam deflection experiments. J Electroanal Chem 362:55–69. doi:10.1016/0022-0728(93)80006-4

    Article  CAS  Google Scholar 

  4. Mathias MF (1996) Modelling probe beam deflection experiments in binary bathing electrolytes. J Electroanal Chem 407:115–122. doi:10.1016/0022-0728(95)04456-6

    Article  Google Scholar 

  5. Newman JS, Thomas-Alyea KE (2004) Electrochemical systems. Wiley-IEEE, New York

    Google Scholar 

  6. Barbero C, Miras MC, Kötz R (1992) Electrochemical mass transport studied by probe beam deflection: potential step experiments. Electrochim Acta 37:429–437. doi:10.1016/0013-4686(92)87032-U

    Article  CAS  Google Scholar 

  7. (1978) CRC handbook of chemistry and physics, 68 edn. CRC, New York

    Google Scholar 

  8. O’Brien RN (1972) In: Weissberger A, Rossiter BW (eds) Physical methods of chemistry. Wiley Interscience, New York

    Google Scholar 

  9. Lobo VMM (1989) Handbook of electrolyte solutions. Elsevier, Amsterdam

    Google Scholar 

  10. Barbero C, Miras MC, Koetz R, Haas O (1993) Probe beam deflection: a useful tool for the study of ion transport in polymers. Solid State Ionics 60:167–172. doi:10.1016/0167-2738(93)90292-B

    Article  CAS  Google Scholar 

  11. Grumelli DE, Wolosiuk A, Forzani E, Planes GA, Barbero C, Calvo EJ (2003) Probe beam deflection study of ion exchange in self-assembled redox polyelectrolyte thin films. Chem Commun 3014–3015. doi:10.1039/B308449C

  12. Garcia G, Bruno MM, Planes GA, Rodriguez JL, Barbero CA, Pastor E (2008) Phys Chem Chem Phys 10:6677–6685. doi:10.1039/B806938G

    Article  CAS  Google Scholar 

  13. Channelle A (2009) Beginning OpenOffice 3: from novice to professional. Apress, New York

    Google Scholar 

  14. Decker F, Neuenschwander RT, Cesar CL, Penna AFS (1987) The mirage effect in electrochemistry. J Electroanal Chem 228:481–486. doi:10.1016/0022-0728(87)80125-0

    Article  CAS  Google Scholar 

  15. Awakura Y, Okada M, Kondo Y (1977) Profile of the refractive index in the cathodic diffusion layer of an electrolyte containing CuSO4 and H2SO4. J Electrochem Soc 124:1050–1057. doi:10.1149/1.2133477

    Article  CAS  Google Scholar 

  16. Tamor MA, Zanini M (1986) A scanning refractometer for electrochemical studies. J Electrochem Soc 133:1399–1401

    Article  CAS  Google Scholar 

  17. Decker F, Fracastoro-Decker M (1988) The mirage effect in photoelectrochemistry. J Electroanal Chem 243:187–191. doi:10.1016/0022-0728(88)85038-1

    Article  CAS  Google Scholar 

  18. Vorotyntsev MA, Lopez C, Vieil E (1994) On the interpretation of optical beam deflection data at excess of a background electrolyte. J Electroanal Chem 368:155–16. doi:10.1016/0022-0728(93)03095-7

    Article  CAS  Google Scholar 

  19. Garay F, Barbero CA (2006) Charge neutralization process of mobile species at any distance from the electrode/solution interface. 1. Theory and simulation of concentration and concentration gradients developed during potentiostatic conditions. Anal Chem 78:6733–6739. doi:10.1021/ac0603678

    Article  CAS  Google Scholar 

  20. Garay F, Barbero CA (2006) Charge neutralization process of mobile species at any distance from the electrode/solution interface. 2. Concentration gradients during potential pulse experiments. Anal Chem 78:6740–6746. doi:10.1021/ac0603680

    Article  CAS  Google Scholar 

  21. Britz D (1988) Digital simulation in electrochemistry. Springer, Berlin

    Google Scholar 

  22. Rudolph M, Reddy DP, Feldberg SW (1994) A simulator for cyclic voltammetric responses. Anal Chem 66:589A–600A. doi:10.1021/ac00082a002

    CAS  Google Scholar 

  23. Garay F, Barbero CA (2008) Charge neutralization process of mobile species developed during potentiodynamic conditions. Part 1: Theory. J Electroanal Chem 624:218–227. doi:10.1016/j.jelechem.2008.09.010

    Article  CAS  Google Scholar 

  24. Garay F, Iglesias RI, Barbero CA (2008) Charge neutralization process of mobile species developed during potentiodynamic conditions. Part 2: Simulation and fit of probe beam deflection experiments. J Electroanal Chem 624:211–217. doi:10.1016/j.jelechem.2008.09.009

    Article  CAS  Google Scholar 

  25. Coury L (1999) Conductance measurements Part 1: Theory. Curr Sep 18:91–96

    CAS  Google Scholar 

  26. Wang J, Wang Z, Scherson DA (2007) Beam probe deflection analysis of redox active species irreversibly adsorbed on electrode surfaces. J Electrochem Soc 154:F165–F171. doi:10.1149/1.2754070

    Article  CAS  Google Scholar 

  27. Dauvotis VE, Moorhead ED, Stephens MM, Tomaszewski TE (1986) J Electroanal Chem 202:37–55. doi:10.1016/0022-0728(86)90106-3

    Article  Google Scholar 

  28. Savéant JM, Tessier D (1975) Convolution potential sweep voltammetry V. Determination of charge transfer kinetics deviating from the Butler-Volmer behavior. J Electroanal Chem 65:57–66. doi:10.1016/0368-1874(75)85105-7

    Article  Google Scholar 

  29. Oldham KB (1986) Convolution: a general electrochemical procedure implemented by a universal algorithm. Anal Chem 58:2296–2300. doi:10.1021/ac00124a040

    Article  CAS  Google Scholar 

  30. Engstrom RC, Mark Wightman R, Kristensen EW (1988) Diffusional distortion in the monitoring of dynamic events. Anal Chem 60:652–656. doi:10.1021/ac00158a010

    Article  CAS  Google Scholar 

  31. Myland JC, Oldham KB (1999) Concentrations of electroactive solutes, during cyclic and other voltammetries, at points away from the electrode surface. 1. Fundamental relationships and their validation. Anal Chem 71:183–195. doi:10.1021/ac980769i

    Article  CAS  Google Scholar 

  32. Vieil E (1994) Mass transfer and convolution. Part 1. Theory. J Electroanal Chem 364:9–15. doi:10.1016/0022-0728(93)02925-8

    Article  CAS  Google Scholar 

  33. Henderson MJ, Hillman AR, Vieil E, Lopez C (1998) Combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD): validation of the technique by a study of silver ion mass transport. J Electroanal Chem 458:241–248. doi:10.1016/S0022-0728(98)00358-1

    Article  CAS  Google Scholar 

  34. Henderson MJ, Hillman AR, Vieil E (2000) Chronoamperometric resolution of ion and solvent transfers at a poly(o-toluidine) modified electrode by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD). Electrochim Acta 45:3885–3894. doi:10.1016/S0013-4686(00)00453-9

    Article  CAS  Google Scholar 

  35. Vieil E, Meerholz K, Matencio T, Heinze J (1994) Mass transfer and convolution: Part II In situ optical beam deflection study of ionic exchanges between polyphenylene films and a 1:1 electrolyte. J Electroanal Chem 368:183–191. doi:10.1016/0022-0728(93)03110-B DOI:dx.doi.org

    Article  CAS  Google Scholar 

  36. Vieil E, Lopez C (1999) Quantitative discrimination of mass fluxes at electrochemical interfaces by optical beam deflection. J Electroanal Chem 466:218–233. doi:10.1016/S0022-0728(99)00153-9

    Article  CAS  Google Scholar 

  37. Henderson MJ, Hillman AR, Vieil E (1998) A combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) study of a poly(o-toluidine) modified electrode in perchloric acid solution. J Electroanal Chem 454:1–8. doi:10.1016/S0022-0728(98)00245-9

    Article  CAS  Google Scholar 

  38. Bowling R, McCreery RL (1988) Diagnosis of adsorption on solid electrodes with semi-integral voltammetry. Anal Chem 60:605–608. doi:10.1021/ac00157a022

    Article  CAS  Google Scholar 

  39. Barbero C, Silber JJ, Sereno L (1990) Electrochemical properties of poly-ortho-aminophenol modified electrodes in aqueous acid solutions. J Electroanal Chem 291:81–101. doi:10.1016/0022-0728(90)87179-N

    Article  CAS  Google Scholar 

  40. Salavagione HJ, Arias-Pardilla J, Pérez JM, Vázquez JL, Morallón E, Miras MC, Barbero C (2005) Study of redox mechanism of poly(o-aminophenol) using in situ techniques: evidence of two redox processes. J Electroanal Chem 576:139–145. doi:10.1016/J.JELECHEM.2004.10.013

    Article  CAS  Google Scholar 

  41. Higham DJ, Higham NJ (2000) MATLAB guide. Society for Industrial & Applied Mathematics, New York

    Google Scholar 

  42. Braslavsky S, Heihoff K (1991) Photothermal methods. In: Scaiano JC (ed) CRC handbook of organic photochemistry. CRC, Boca Raton

    Google Scholar 

  43. Rosolen JM, Fracastoro-Decker M, Decker F (1993) The mirage effect: a sensitive probe for electrochemical cell calorimetry. J Electroanal Chem 346:119–133. doi:10.1016/0022-0728(93)85007-4

    Article  CAS  Google Scholar 

  44. Kötz R, Barbero C, Haas O (1990) Probe beam deflection investigation of the charge storage reaction in anodic iridium and tungsten oxide films. J Electroanal Chem 296:37–49. doi:10.1016/0022-0728(90)87231-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyözö G. Láng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Láng, G.G., Barbero, C.A. (2012). Basic Principles of Probe Beam Deflection Techniques. In: Laser Techniques for the Study of Electrode Processes. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27651-4_10

Download citation

Publish with us

Policies and ethics