Skip to main content

Liquid Membrane and Other Membrane Oscillators

  • Chapter
  • First Online:
Self-Organization in Electrochemical Systems II

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1166 Accesses

Abstract

As a continuation of convective instabilities enclosed in Chapter 5, experimental examples of electrochemical systems with one or two liquid/liquid interfaces which exhibit spontaneous oscillations of interfacial tension and potential are described. The general idea of such non-equilibrium systems is to connect two immiscible liquids in each of which the species better soluble in the other phase is dissolved (e.g., nitrobenzene solution of picric acid–aqueous solution of tetraalkylammmonium salt). Oscillations occur then during the transport of the respective species through the interface, on a way towards thermodynamic equilibrium. In the case of three V-phase system, usually realized in U-shape reactor, the two external phases are the aqueous solutions, while the middle organic phase is a liquid membrane. Such systems were studied as electrochemical models of the taste and smell sensors. In spite of simplicity of the construction of such systems, the mechanism of oscillations remains a subject of discussion and the development of relevant concepts is briefly reviewed. Experimental realizations are supported by outline description of theoretical models. As a supplement, selected oscillators with solid membranes are briefly reviewed, including the pioneer system of Teorell, aiming to mimick the neural response in living organisms. Rare examples of oscillations in the conducting polymer systems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dupeyrat M, Nakache E (1978) Direct conversion of chemical energy into mechanical energy at an oil water interface. Bioelectrochem Bioenerg 5:134–141

    Article  CAS  Google Scholar 

  2. Nakache E, Dupeyrat M (1982) Chemical reactions and oscillating potential difference variations at an oil–water interface. Bioelectrochem Bioenerg 9:583–590

    Article  CAS  Google Scholar 

  3. Yoshikawa K, Matsubara Y (1983) Spontaneous oscillation of pH and electrical potential in an oil–water system. J Am Chem Soc 105:5967–5969

    Article  CAS  Google Scholar 

  4. Toko K, Yoshikawa K, Tsukiji M, Nosaka M, Yamafuji K (1985) On the oscillatory phenomenon in an oil/water interface. Biophys Chem 22:151–158

    Article  CAS  Google Scholar 

  5. Yoshikawa K, Matsubara Y (1984) Chemoreception by an excitable liquid membrane: characteristic effects of alcohol on the frequency of electrical oscillations. J Am Chem Soc 106:4423–4427

    Article  CAS  Google Scholar 

  6. Yoshikawa K, Shoji M, Nakata S, Maeda S, Kawakami H (1988) An excitable liquid membrane possibly mimicking the sensing mechanism of taste. Langmuir 4:759–762

    Article  Google Scholar 

  7. Yoshikawa K, Omochi T, Matsubara Y, Kourai H (1986) A possibility to recognize chirality by an excitable artificial liquid membrane. Biophys Chem 24:111–119

    Article  CAS  Google Scholar 

  8. Yoshikawa K, Matsubara Y (1985) Oscillation of electrical potential across a liquid membrane induced by amine vapor. Langmuir 1:230–232

    Article  CAS  Google Scholar 

  9. Yoshikawa K, Nakata S, Omochi T, Colacicco G (1986) Novel liquid membrane oscillator with anionic surfactant. Langmuir 2:715–717

    Article  CAS  Google Scholar 

  10. Noble RD, Way JD (1987) Liquid membrane theory and application, ACS symp Ser, vol 374. ACS, Washington, DC

    Book  Google Scholar 

  11. Szpakowska M (2009) Liquid membrane oscillators. Desalination 241:349–356

    Article  CAS  Google Scholar 

  12. Deutsch EW, Hansch C (1966) Dependence of relative sweetness on hydrophobic bonding. Nature (London) 211:75

    Article  CAS  Google Scholar 

  13. Beidler LM (1954) A theory of taste simulation. J Gen Physiol 38:133–139

    Article  CAS  Google Scholar 

  14. Szpakowska M, Czaplicka I, Szwacki J, Nagy OB (2002) Oscillatory phenomena in systems with bulk liquid membranes. Chem Pap 56:20–23

    CAS  Google Scholar 

  15. Szpakowska M, Szwacki J, Lisowska-Oleksiak A (2004) Investigation of some taste substances using a set of electrodes with lipid-modified membranes. Desalination 163:55–59

    Article  CAS  Google Scholar 

  16. Płocharska-Jankowska E, Mátéfi-Tempfli S, Nagy OB (2005) On the possibility of molecular recognition of taste substances studied by Gábor analysis of oscillations. Biophys Chem 114:85–93

    Article  Google Scholar 

  17. Płocharska-Jankowska E, Szpakowska M, Mátéfi-Tempfli S, Nagy OB (2006) A new approach to the spectra analysis of liquid membrane oscillators by Gábor transformation. J Phys Chem B 110:289–294

    Article  Google Scholar 

  18. Gábor D (1946) Theory of communication. J Inst Electr Eng (London) 93:429–457

    Google Scholar 

  19. Szpakowska M, Magnuszewska A, Szwacki J (2006) On the possibility of using liquid or lipid, lipid like-polimer membrane systems as taste sensor. J Membr Sci 273:116–123

    Article  CAS  Google Scholar 

  20. Buhse T, Nagarajan R, Lavabre D, Micheau JC (1997) Phase-transfer model for the dynamics of “micellar autocatalysis”. J Phys Chem A 101:3910–3917

    Article  CAS  Google Scholar 

  21. Tixier J, Pimienta V, Buhse T, Lavabre D, Nagarajan R, Micheau JC (2000) (2000) Ester containing aggregates in the autocatalytic biphasic hydrolysis of ethyl alkanoate colloids surf. Coll Surf A 167:131–142

    Article  CAS  Google Scholar 

  22. Bachmann PA, Luisi PL, Lang J (1992) Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357:57–59

    Article  CAS  Google Scholar 

  23. Buhse T, Pimienta V, Lavabre D, Micheau JC (1997) Experimental evidence of kinetic bistability in a biphasic surfactant system. J Phys Chem A 101:5215–5217

    Article  CAS  Google Scholar 

  24. Pimienta V, Etchenique R, Buhse T (2001) On the origin of electrochemical oscillations in the picric acid/CTAB two-phase system. J Phys Chem A 105:10037–10044

    Article  CAS  Google Scholar 

  25. Pimienta V, Lavabre D, Buhse T, Micheau JC (2004) Correlation between electric potential and interfacial tension oscillations in a water-oil-water system. J Phys Chem B 108:7331–7336

    Article  CAS  Google Scholar 

  26. Arai K, Fukuyama S, Kusu F, Takamura K (1995) Role of surfactant in the electrical potential oscillation across a liquid membrane. Electrochim Acta 40:2913–2920

    Article  CAS  Google Scholar 

  27. Maeda K, Nagami S, Yoshida Y, Ohde H, Kihara S (2001) Voltammetric elucidation of the process of self-sustained potential oscillation observed with a liquid membrane system composed of water containing cetyltrimethylammonium chloride–nitrobenzene containing picric acid–pure water. J Electroanal Chem 496:124–130

    Article  CAS  Google Scholar 

  28. Maeda K, Kihara S, Suzuki M, Matsui M (1990) Voltammetric study on the oscillation of the potential difference at a liquid/liquid or liquid/membrane interface accompanied by ion transfer. J Electroanal Chem 295:183–201

    Article  CAS  Google Scholar 

  29. Kihara S, Maeda K, Shirai O, Yoshida Y, Matsui M (1993) In: Pungor E (ed) Bioelectroanalysis, vol 2. Akadémiai Kiadó, Budapest, p 331

    Google Scholar 

  30. Shirai O, Kihara S, Yoshida Y, Matsui M (1995) Ion transfer through a liquid membrane or a bilayer lipid membrane in the presence of sufficient electrolytes. J Electroanal Chem 389:61–70

    Article  Google Scholar 

  31. Szpakowska M, Czaplicka I, Nagy OB (2006) On the mechanism of nitrobenzene liquid membrane oscillators containing hexadecyltrimethylammonium bromide. Biophys Chem 120:148–153

    Article  CAS  Google Scholar 

  32. Szpakowska M, Czaplicka I, Nagy OB (2006) Mechanism of a four-phase liquid membrane oscillator containing hexadecyltrimethylammonium bromide. J Phys Chem A 110:7286–7292

    Article  CAS  Google Scholar 

  33. Szpakowska M, Czaplicka I, Płocharska-Jankowska E, Nagy OB (2003) Contribution to the mechanism of liquid membrane oscillators involving cationic surfactant. J Colloid Interface Sci 261:451–455

    Article  CAS  Google Scholar 

  34. Szpakowska M, Magnuszewska A, Nagy OB (2008) Mechanism of nitromethane liquid membrane oscillator containing sodium oleate. J Colloid Interface Sci 325:494–499

    Article  CAS  Google Scholar 

  35. Ikezoe Y, Ishizaki S, Takahashi T, Yui H, Fujinami M, Sawada T (2004) Hydrodynamically induced chemical oscillation at a water/nitrobenzene interface. J Colloid Interface Sci 275:298–304

    Article  CAS  Google Scholar 

  36. Takahashi S, Harata A, Kitamori T, Sawada T (1994) Quasi-elastic laser scattering method for monitoring capillary wave frequency at a water/nitrobenzene interface. Anal Sci 10:305–308

    Article  CAS  Google Scholar 

  37. Zhang Z, Tsuyumoto I, Kitamori T, Sawada T (1998) Observation of the dynamic and collective behavior of surfactant molecules at a water/nitrobenzene interface by a time-resolved quasi-elastic laser-scattering method. J Phys Chem B 102:10284–10287

    Article  CAS  Google Scholar 

  38. Uchiyama Y, Kitamori T, Sawada T, Tsuyumoto I (2000) Role of the liquid/liquid interface in a phase-transfer catalytic reaction as investigated by in situ measurements using the quasi-elastic laser scattering method. Langmuir 16:6597–6600

    Article  CAS  Google Scholar 

  39. Kovalchuk NM, Vollhardt D (2006) Marangoni instability and spontaneous nonlinear oscillations produced at liquid interfaces by surfactant transfer. Adv Colloid Interface Sci 120:1–31

    Article  CAS  Google Scholar 

  40. Szpakowska M, Płocharska-Jankowska E, Nagy OB (2009) Molecular mechanism and chemical kinetic description of nitrobenzene liquid membrane oscillator containing benzyldimethyltetradecylammonium chloride surfactant. J Phys Chem B 113:15503–15512

    Article  CAS  Google Scholar 

  41. Larter R (1990) Oscillations and spatial nonuniformities in membranes. Chem Rev 90:355–381

    Article  CAS  Google Scholar 

  42. Berridge MJ, Rapp PE (1979) A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 81:217–279

    CAS  Google Scholar 

  43. Rapp PE (1979) An atlas of cellular oscillators. J Exp Biol 81:281–306

    CAS  Google Scholar 

  44. Scott BIH (1957) Aust J Biol Sci 10:164

    Google Scholar 

  45. Dale B, de Santis A (1981) Maturation and fertilization of the sea urchin oocyte: an electrophysiological study. Dev Biol 85:474–484

    Article  CAS  Google Scholar 

  46. Whitaker M, Steinhardt RA (1982) Ionic regulation of egg activation. Q Rev Biophys 15:593–666

    Article  CAS  Google Scholar 

  47. Yoneda M, Ikeda M, Washitani S (1978) Periodic change in the tension at the surface of activated non-nucleate fragments of sea-urchin eggs. Dev Growth Differ 20:329–336

    Article  Google Scholar 

  48. Matsuda H, Noma A, Kurachi Y, Irisawa H (1982) Transient depolarization and spontaneous voltage fluctuations in isolated single cells from guinea pig ventrices. Calcium-mediated membrane potential fluctuations. Circ Res 51:142–151

    Article  CAS  Google Scholar 

  49. Guttman R, Feldman L, Jakobsson E (1980) Frequency entrainment of squid axon membrane. J Membr Biol 56:9–18

    Article  CAS  Google Scholar 

  50. Matsumoto G, Aihara K, Ichikawa M, Tasaki A (1984) Periodic and nonperodic responses of membrane potentials in squid giant axons during sinusoidal current stimulations. J Theor Neurobiol 3:1–14

    Google Scholar 

  51. Noble D, Noble PJ, Fink M (2010) Competing oscillators in cardiac pacemaking. Historical background. Circ Res 106:1791–1797

    Article  CAS  Google Scholar 

  52. Imtiaz MS, von der Weid PY, van Helden DF (2010) Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J 277:278–285

    Article  CAS  Google Scholar 

  53. Rex S, Schulze KD (1994) Stability analysis of an electrochemical model for excitable biomembranes. Z phys Chem 186:65–76

    Article  CAS  Google Scholar 

  54. Goldbeter A (1997) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behavior. Cambridge University Press, Cambridge, MA

    Google Scholar 

  55. Larter R (2003) Understanding complexity in biophysical chemistry. J Phys Chem B 107:415–429

    Article  CAS  Google Scholar 

  56. Kihara S, Maeda K (1994) Membrane oscillations and ion transport. Prog Surf Sci 47:1–54

    Article  CAS  Google Scholar 

  57. Murray JD (2002) Mathematical biology. I. An introduction, 3rd edn. Springer, New York, NY

    Google Scholar 

  58. Murray JD (2003) Mathematical biology. II. Spatial models and biomedical applications, 3rd edn. Springer, New York. NY

    Google Scholar 

  59. Teorell T (1951) Zur quantitativen Behandlung der Membranpermeabilität. Z Elektrochem 55:46–469

    Google Scholar 

  60. Teorell T (1958) Exp Cell Res Suppl 5:83

    Google Scholar 

  61. Teorell T (1959) Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomena in artificial membranes. J Gen Physiol 42:831–846

    Article  CAS  Google Scholar 

  62. Teorell T (1959) Electrokinetic membrane processes in relation to properties of excitable tissues. II. Some theoretical considerations. J Gen Physiol 42:847–863

    Article  CAS  Google Scholar 

  63. Teorell T (1961) Oscillatory electrophoresis in ion exchange membranes. Ark Kemi 18:401–408

    CAS  Google Scholar 

  64. Teorell T (1962) Excitability phenomena in artificial membranes. Biophys J 2(suppl):27–52

    CAS  Google Scholar 

  65. Teorell T (1961) An analysis of the current–voltage relationship in excitable nitella cells. Acta Physiol Scand 53:1–6

    Article  CAS  Google Scholar 

  66. Franck UF (1963) Über das elektrochemische Verhalten von porösen Ionenaustauschmembranen. Ber Bunsenges Phys Chem 67:657–671

    Google Scholar 

  67. Franck UF (1978) Chemische Oszillationen. Angew Chem 90:1–16

    Article  CAS  Google Scholar 

  68. Drouin H (1969) Experimente mit dem Teorellschen Membranoszillator. Ber Bunsenges Phys Chem 73:223–229

    CAS  Google Scholar 

  69. Meares P, Page KR (1974) Oscillatory fluxes in highly porous membranes. Proc R Soc Lond A 339:513–532

    Article  Google Scholar 

  70. Franck UF (1980) The Teorell membrane oscillator—a complete nerve model. Upsala J Med Sci 85:265–282

    Article  CAS  Google Scholar 

  71. Langer P, Page KR, Wiedner G (1981) A Teorell oscillator system with fine pore membranes. Biophys J 36:93–107

    Article  CAS  Google Scholar 

  72. Karvaly B (1973) Oscillatory electrochemical reactions at bimolecular lipid membrane-redox electrolyte interfaces. Nature 244:25–26

    Article  CAS  Google Scholar 

  73. Mueller P, Rudin DO (1967) Action potential phenomena in experimental bimolecular lipid membranes. Nature (London) 213:603–604

    Article  CAS  Google Scholar 

  74. Mueller P, Rudin DO (1968) Action potentials induced in biomolecular lipid membranes. Nature (London) 217:713–719

    Article  CAS  Google Scholar 

  75. Mueller P, Rudin DO (1968) Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol 18:222–224

    Article  CAS  Google Scholar 

  76. Petitjean J, Aeiyach S, Ferreira CA, Lacaze PC, Takenouti H (1995) A new oscillatory electrochemical phenomenon observed in the electropolymerization of pyrrole in MeCN + N(Bu)4PF6 on an iron electrode studied by the ring-disk-electrode technique. J Electrochem Soc 142:136–142

    Article  CAS  Google Scholar 

  77. Lei T, Aoki K, Fujita K (2000) Periodical oxidation current of single particle made of redox latex. Electrochem Commun 2:290–294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlik, M. (2012). Liquid Membrane and Other Membrane Oscillators. In: Self-Organization in Electrochemical Systems II. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27627-9_6

Download citation

Publish with us

Policies and ethics