Skip to main content

Spatial and Spatiotemporal Patterns in Anodized Semiconductors

  • Chapter
  • First Online:
Self-Organization in Electrochemical Systems II

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1161 Accesses

Abstract

Following outline description of temporal current oscillations during anodic dissolution of selected semiconductors, given in Section 6.3 of volume I, the present chapter emphasizes the role of spatiotemporal dynamic instabilities in these phenomena. Accordingly, the oscillatory dissolution of silicon in fluoride media is analyzed in terms of present models of this process, based on the inhomogeneous distribution of silicon oxide layer and the dynamics of its formation/dissolution on the Si surface, including recent suggestions on the possible role of the ohmic potential drops. Theoretical calculations of current and voltage oscillations are compared with experimental results. Also, recent achievements in experimental visualization of spatiotemporal self-organization in Si anodization in fluoride media are described. Furthermore, examples of self-organization in III–V semiconductors (GaAs, GaP, InP) manifesting itself in the various kinds of emerging porous structures are described. The anodization of titanium to patterned, semiconducting TiO2 layer and conditions for formation of self-organized nanotubular TiO2 architectures are given. Furthermore, n-TiO2 is shown to form ordered arrays of nanogrooves during its electrochemical photoetching. An appropriate model, explaining the emergence of such patterns in terms of nonlinear dynamics, is outlined. As a summary, the overview of current state of spatiotemporal self-organization in etched semiconductors is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grzanna J, Jungblut H, Lewerenz HJ (2000) A model for electrochemical oscillations at the Si|electrolyte contact. Part I. Theoretical development. J Electroanal Chem 486:181–189

    Article  CAS  Google Scholar 

  2. Grzanna J, Jungblut H, Lewerenz HJ (2000) A model for electrochemical oscillations at the Si/electrolyte contact. Part II. Simulations and experimental results. J Electroanal Chem 486:190–203

    Article  CAS  Google Scholar 

  3. Feller W (1971) An introduction to probability theory and its applications, vol II. Wiley, New York

    Google Scholar 

  4. Ozanam F, Blanchard N, Chazalviel JN (1993) Microscopic, self-oscillating domains at the silicon surface during its anodic dissolution in a fluoride electrolyte. Electrochim Acta 38:1627–1630

    Article  CAS  Google Scholar 

  5. Gerischer H, Lübke M (1988) Electrolytic growth and dissolution of oxide layers on silicon in aqueous solutions of fluorides. Ber Bunsenges Phys Chem 92:573–577

    CAS  Google Scholar 

  6. Lewerenz HJ, Jungblut H, Rauscher S (2000) Surface analysis of the electropolishing layer on Si(111) in ammonium fluoride solution. Electrochim Acta 45:4615–4627

    Article  CAS  Google Scholar 

  7. Lewerenz HJ, Skorupska K, Aggour M, Stempel T, Grzanna J (2009) Surface chemistry and electronics of semiconductor-nanosystem junctions I: metal-nanoemitter-based solar cells. J Solid State Electrochem 13:185–194

    Article  CAS  Google Scholar 

  8. Grzanna J, Notz T, Lewerenz HJ (2008) Model for current oscillations at the Si/electrolyte contact: extension to spatial resolution. ECS Trans 16:173–180

    Article  CAS  Google Scholar 

  9. Grzanna J, Notz T, Stempel T (2011) Nanopore morphology development during current oscillations at the Si/electrolyte contact. ECS Trans 33:127–135

    Article  CAS  Google Scholar 

  10. Carstensen J, Prange R, Popkirov GS, Föll H (1998) A model for current oscillations in the Si-HF system based on a quantitative of current transients. Appl Phys A 67:459–467

    Article  CAS  Google Scholar 

  11. Carstensen J, Prange R, Föll H (1999) A model for current-voltage oscillations at the silicon electrode and comparison with experimental results. J Electrochem Soc 146:1134–1140

    Article  CAS  Google Scholar 

  12. Ozanam F, Chazalviel JN, Radi A, Etman M (1991) Current oscillations in the anodic dissolution of silicon in fluoride electrolytes. Ber Bunsenges Phys Chem 95:98–101

    Article  CAS  Google Scholar 

  13. Chazalviel JN (1992) Ionic processes through the interfacial oxide in the anodic dissolution of silicon. Electrochim Acta 37:865–875

    Article  CAS  Google Scholar 

  14. Foca E, Carstensen J, Föll H (2007) Modelling electrochemical current and potential oscillations at the Si electrode. J Electroanal Chem 603:175–202

    Article  CAS  Google Scholar 

  15. Carstensen J, Christophersen M, Föll H (2000) Pore formation mechanism for the Si-HF system. Mater Sci Eng B69–70:23–28

    Article  Google Scholar 

  16. Uhlir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35:333–347

    CAS  Google Scholar 

  17. Uhlir A Jr, Uhlir (Williams) I (2005) Historical perspective on the discovery of silicon. Phys Stat Sol C 2:3185–3187

    Article  CAS  Google Scholar 

  18. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  19. Lehmann V, Föll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type Silicon. J Electrochem Soc 137:653–659

    Article  CAS  Google Scholar 

  20. Foca E, CarstensenJ FH (2005) Monte Carlo simulation of electrochemical oscillations in the electropolishing regime. Phys Stat Sol A 202:1524–1528

    Article  CAS  Google Scholar 

  21. Föll H, Leisner M, Cojocaru A, Carstensen J (2009) Self-organization phenomena at semiconductor electrodes. Electrochim Acta 55:327–339

    Article  Google Scholar 

  22. Parkhutik VP, Matveeva E (1999) Observation of new oscillatory phenomena during the electrochemical anodization of silicon. Electrochem Solid State Lett 2:371–374

    Article  CAS  Google Scholar 

  23. Parkhutik V, Costa Gómez F, Moya Tarazona L, Fenollosa Esteve R (2000) Oscillatory kinetics of anodic oxidation of silicon – influence of the crystallographic orientation. Microelectron Reliab 40:795–798

    Article  Google Scholar 

  24. Parkhutik V, Matveeva E, Perez R, Alamo J, Beltrán D (2000) Mechanism of large oscillations of anodic potential during anodization of silicon in H3PO4/HF solutions. Mater Sci Eng B69–70:553–558

    Article  Google Scholar 

  25. Parkhutik V (2001) Silicon anodic oxides grown in the oscillatory anodisation regime – kinetics of growth, composition and electrical properties. Solid State Electron 45:1451–1463

    Article  CAS  Google Scholar 

  26. Parkhutik V (2002) Chaos-order transitions at corroding silicon surface. Mater Sci Eng B 88:269–276

    Article  Google Scholar 

  27. Parkhutik VP (1991) Kinetics, composition and mechanism of anodic oxide growth on silicon in water-containing electrolytes. Electrochim Acta 36:1611–1616

    Article  CAS  Google Scholar 

  28. Miethe I, García-Morales V, Krischer K (2009) Irregular subharmonic cluster patterns in autonomous photoelectrochemical oscillator. Phys Rev Lett 102:194101-1–194101-4

    Article  Google Scholar 

  29. Aranson IS, Kramer L (2002) The world of the complex Ginzburg-Landau equation. Rev Mod Phys 74:99–143

    Article  Google Scholar 

  30. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, Berlin

    Book  Google Scholar 

  31. García-Morales V, Krischer K (2008) Nonlocal complex Ginzburg-Landau equation for electrochemical systems. Phys Rev Lett 100:054101-1–054101-4

    Article  Google Scholar 

  32. Lehmann V, Gösele U (1991) Porous silicon formation: a quantum wire effect. Appl Phys Lett 58:856–858

    Article  CAS  Google Scholar 

  33. Wehsporn RB, Schilling J (2002) Electrochemically prepared pore arrays for photonic-crystal applications. MRS Bull 26:623–626

    Google Scholar 

  34. Christophersen M, Langa S, Carstensen J, Tiginyanu IM, Föll H (2003) A comparison of pores in silicon and pores in III-V compound materials. Phys Stat Sol A 197:197–203

    Article  CAS  Google Scholar 

  35. Miethe I, Krischer K (2012) Ellipsomicroscopic studies of the anodic oxidation of p-type silicon in fluoride containing electrolytes during current oscillations. J Electroanal Chem 666:1–10

    Article  CAS  Google Scholar 

  36. Chazalviel JN, Ozanam F (2010) Current oscillations in the anodic dissolution of silicon: On the origin of a sustained oscillation on the macroscopic scale. Electrochim Acta 55:656–665

    Article  CAS  Google Scholar 

  37. Van Meirhaeghe RL, Cardon F, Gomes WP (1979) Photocurrent oscillations at the n-GaAs/electrolyte interface. Electrochim Acta 24:1047–1049

    Article  Google Scholar 

  38. Föll H, Langa S, Carstensen J, Christophersen M, Tiginyanu IM (2003) Pores in III-V semiconductors. Adv Mater 15:183–198

    Article  Google Scholar 

  39. Föll H, Carstensen J, Langa S, Christophersen M, Tiginyanu IM (2003) Porous III-V compound semiconductors: formation, properties and comparison to silicon. Phys Stat Sol A 197:61–70

    Article  Google Scholar 

  40. Schmuki P, Lockwood DJ, Ogata Y, Isaacs HS (eds) (2001) Pits and pores II: formation, properties and significance for advanced materials. The Electrochemical Society, Phoenix, AR

    Google Scholar 

  41. Langa S, Christophersen M, Carstensen J, Tiginyanu IM, Föll H (2003) Single crystalline 2D porous arrays obtained by self organization in n-InP. Phys Stat Sol A 197:77–82

    Article  CAS  Google Scholar 

  42. Lehmann V, Stengel R, Luigart A (2000) On the morphology and electrochemical formation mechanism of mesoporous silicon. Mater Sci Eng B69–70:11–22

    Article  Google Scholar 

  43. Chazalviel JN, Wehrspohn RB, Ozanam F (2000) Electrochemical preparation of porous semiconductors: from phenomenology to understanding. Mater Sci Eng B69–70:1–10

    Article  Google Scholar 

  44. Langa S, Carstensen J, Tiginyanu IM, Christophersen M, Föll H (2005) Selfordering in porous III-V compounds. In: Wehrspohn RB (ed) Ordered porous nanostructures and applications. Springer, Berlin, p 57

    Chapter  Google Scholar 

  45. Langa S, Carstensen J, Tiginyanu IM, Christophersen M, Föll H (2001) Self-induced voltage oscillations during anodic etching of n-InP and possible applications for three-dimensional microstructures. Electrochem Solid State Lett 4:G50–G52

    Article  CAS  Google Scholar 

  46. Harvey E, Buckley DN, Chu SNG (2002) Oscillatory behavior during the anodization of InP. Electrochem Solid State Lett 5:G22–G25

    Article  CAS  Google Scholar 

  47. Wloka J, Lockwood DJ, Schmuki P (2005) High intensity and oscillatory electroluminescence observed during porous etching of GaP in HBr and HF electrolytes. Chem Phys Lett 414:47–50

    Article  CAS  Google Scholar 

  48. Tiginyanu IM, Schwab C, Grob JJ, Prevot B, Hartnagel HL, Vogt A, Irmer G, Monecke J (1997) Ion implantation as a tool for controlling the morphology of porous gallium phosphide. Appl Phys Lett 71:3829–3831

    Article  CAS  Google Scholar 

  49. Erne BH, Vanmaekelbergh D, Kelly JJ (1996) Morphology and strongly enhanced photoresponse of GaP electrodes made porous by anodic etching. J Electrochem Soc 143:305–314

    Article  CAS  Google Scholar 

  50. Takizawa T, Arai S, Nakahara M (1994) Fabrication of vertical and uniform-size porous InP structure by electrochemical anodization. Jpn J Appl Phys 33:L643–L645

    Article  CAS  Google Scholar 

  51. Schilling J, Müller F, Matthias S, Wehrspohn RB, Gösele U, Busch K (2001) Three-dimensional photonic crystal based on macroporous silicon with modulated pore diameter. Appl Phys Lett 78:1180–1182

    Article  CAS  Google Scholar 

  52. Beranek B, Hildebrand H, Schmuki P (2003) Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid State Lett 6:B12–B14

    Article  CAS  Google Scholar 

  53. Warczak M, Sadkowski A (2009) Oscillatory regime of titanium anodization under voltage control. Electrochem Commun 11:1733–1735

    Article  CAS  Google Scholar 

  54. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588–2593

    Article  CAS  Google Scholar 

  55. Macak JM, Schmuki P (2006) Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52:1258–1264

    Article  CAS  Google Scholar 

  56. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241

    Article  CAS  Google Scholar 

  57. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

  58. Nah YC, Paramavisam I, Schmuki P (2010) Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11:2698–2713

    Article  CAS  Google Scholar 

  59. Gerischer H, Tributsch H (1968) Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO - Einkristallen. Ber Bunsenges Phys Chem 72:437–445

    CAS  Google Scholar 

  60. Berger S, Hahn R, Roy P, Schmuki P (2010) Self-organized TiO2 nanotubes: factors affecting their morphology and properties. Phys Stat Sol B 247:2424–2435

    Article  CAS  Google Scholar 

  61. Nakanishi S, Tanaka T, Saji Y, Tsuji E, Fukushima S, Fukami K, Nagai T, Nakamura R, Imanishi A, Nakato Y (2007) Ordered nanogroove arrays on n-TiO2 with a variation of the groove depth, formed by self-organized photoetching. J Phys Chem C 111:3934–3937

    Article  CAS  Google Scholar 

  62. Zúñiga-Pérez J, Martínez-Tomás C, Muñoz-Sanjosé V, Munera C, Ocal C, Laügt M (2005) Faceting and structural anisotropy of nanopatterned CdO(110) layers. J Appl Phys 98:034311-1–034311-5

    Google Scholar 

  63. Sugawara A, Hembree GG, Sheinfein MR (1997) Self-organized mesoscopic magnetic structures. J Appl Phys 82:5662–5669

    Article  CAS  Google Scholar 

  64. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146–149

    Article  CAS  Google Scholar 

  65. Ohzono T, Matsushita SI, Shimomoura M (2005) Coupling of wrinkle patterns to microsphere-array lithographic patterns. Soft Mater 1:227–230

    Article  CAS  Google Scholar 

  66. Grzybowski BA, Bishop KJM, Campbell CJ, Fiałkowski M, Smoukov S (2005) Micro- and nanotechnology via reaction–diffusion. Soft Mater 1:114–128

    Article  CAS  Google Scholar 

  67. Smoukov SK, Bitner A, Campbell CJ, Grzybowska KK, Grzybowski BA (2005) Nano- and microscopic surface wrinkles of linearly increasing heights prepared by periodic precipitation. J Am Chem Soc 127:17803–17807

    Article  CAS  Google Scholar 

  68. Teranishi T, Sugawara A, Shimizu T, Miyake M (2002) Planar array of 1D gold nanoparticles on ridge-and-valley structured carbon. J Am Chem Soc 124:4210–4211

    Article  CAS  Google Scholar 

  69. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468

    Article  CAS  Google Scholar 

  70. Yuzhakov VV, Chang HC, Miller AE (1997) Pattern formation during electropolishing. Phys Rev B 56:12608–12624

    Article  CAS  Google Scholar 

  71. Schmuki P, Fraser J, Vitus CM, Graham MJ, Isaacs HS (1996) Initiation and formation of porous GaAs. J Electrochem Soc 143:3316–3322

    Article  CAS  Google Scholar 

  72. Sugiura T, Itoh S, Ooi T, Yoshida T, Kuroda K, Minoura H (1999) Evolution of a skeleton structured TiO2 surface consisting of grain boundaries. J Electroanal Chem 473:204–208

    Article  CAS  Google Scholar 

  73. Nakato Y, Akanuma H, Shimizu J, Magari Y (1995) Photo-oxidation reaction of water on an n-TiO2 electrode. Improvement in efficiency through formation of surface micropores by photo-etching in H2SO4. J Electroanal Chem 396:35–39

    Article  Google Scholar 

  74. Tsujiko A, Kisumi T, Magari Y, Murakoshi K, Nakato Y (2000) Selective formation of nanoholes with (100)-face walls by photoetching of n-TiO2 (rutile) electrodes, accompanied by increases in water-oxidation photocurrent. J Phys Chem B 104:4873–4879

    Article  CAS  Google Scholar 

  75. Mullins WW, Sekerka TF (1963) Morphological stability of a particle growing by diffusion or heat flow. J Appl Phys 34:323–329

    Article  CAS  Google Scholar 

  76. Berger S, Faltenbacher J, Bauer S, Schmuki P (2008) Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization. Phys Stat Sol RRL 2:102–104

    Article  CAS  Google Scholar 

  77. Jessensky O, Müller F, Gösele U (1998) Self-organized formation of hexagonal pore structures in anodic alumina. J Electrochem Soc 145:3735–3740

    Article  CAS  Google Scholar 

  78. Lee W, Kim JC, Gösele U (2010) Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv Funct Mater 20:21–27

    Article  CAS  Google Scholar 

  79. Thamida SK, Chang HC (2002) Nanoscale pore formation dynamics during aluminum anodization. Chaos 12:240–251

    Article  CAS  Google Scholar 

  80. Ozin GA, Arsenault AA (2005) Nanochemistry. A chemical approach to nanomaterials. RSC Publishing, Cambridge, CA

    Google Scholar 

  81. Fang C, Föll H, Carstensen J (2006) Electrochemical pore etching in germanium. J Electroanal Chem 589:259–288

    Article  CAS  Google Scholar 

  82. Cheng F, Carstensen J, Föll H (2006) Electrochemical pore etching in Ge. Mater Sci Semicond Proc 9:694–700

    Article  CAS  Google Scholar 

  83. Leisner M, Carstensen J, Cojocaru A, Föll H (2008) In-situ FFT impedance spectroscopy during the growth of n-type InP “crysto pores”. ECS Trans 16:133–142

    Article  CAS  Google Scholar 

  84. Leisner M, Carstensen J, Föll H (2010) Pores in n-type InP: a model system for electrochemical pore etching. Nanoscale Res Lett 5:1190–1194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlik, M. (2012). Spatial and Spatiotemporal Patterns in Anodized Semiconductors. In: Self-Organization in Electrochemical Systems II. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27627-9_4

Download citation

Publish with us

Policies and ethics