Skip to main content

Optical Properties of Silicon Nanowires

Optical Properties of Silicon Nanowires and Other Nanostructures

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization

Abstract

Silicon nanowires exhibit strong antireflective properties and are capable of enhancing optical absorption over that of bare bulk crystalline silicon. Low-dimensional silicon nanowires also exhibit luminescence visible to the naked eye under laser excitation. This chapter summarizes recent theoretical and experimental studies on the optical properties of silicon nanowires. The optical properties of silicon nanocones and core-shell nanowires are also discussed. Silicon nanowires are characterized by UV–VIS-NIR and photoluminescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernhard CG (1967) Structural and functional adaptation in a visual system. Endeavour 26:79–84

    Google Scholar 

  2. Clapham PB, Hutley MC (1973) Reduction of lens reflexion by the “Moth Eye” principle. Nature 244:281–282

    Article  ADS  Google Scholar 

  3. Gittleman JI, Sichel EK, Lehmann HW, Widmer R (1979) Textured silicon: a selective absorber for solar thermal conversion. Appl Phys Lett 35:742–744

    Article  ADS  Google Scholar 

  4. Craighead HG, Howard RE, Tennant DM (1980) Textured thin-film Si solar selective absorbers using reactive ion etching. Appl Phys Lett 37:653–655

    Article  ADS  Google Scholar 

  5. Peng K, Xu Y, Wu Y, Yan Y, Lee ST, Zhu J (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1:1062–1067

    Article  Google Scholar 

  6. Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117-1–233117-3

    Article  ADS  Google Scholar 

  7. Sun C, Jiang P, Jiang B (2008) Broadband moth-eye antireflection coatings on silicon. Appl Phys Lett 92:061112

    Article  ADS  Google Scholar 

  8. Min WL, Jiang P, Jiang B (2008) Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures. Nanotechnology 19:475604

    Article  ADS  Google Scholar 

  9. Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748

    Article  Google Scholar 

  10. Kanamori Y, Sasaki M, Hane K (1999) Broadband antireflection gratings fabricated upon silicon substrates. Opt Lett 24:1422–1424

    Article  ADS  Google Scholar 

  11. Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CH, Chang YH, Lee CS, Chen KH, Chen LC (2007) Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat Nanotechnol 2:770–774

    Article  ADS  Google Scholar 

  12. Lalanne P, Morris GM (1997) Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 8:53–56

    Article  ADS  Google Scholar 

  13. Hadobás K, Kirsch S, Carl A, Acet M, Wassermann EF (2000) Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 11:161

    Article  ADS  Google Scholar 

  14. Koynov S, Brandt MS, Stutzmann M (2006) Black nonreflecting silicon surfaces for solar cells. Appl Phys Lett 88:203107

    Article  ADS  Google Scholar 

  15. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287:1471–1473

    Article  ADS  Google Scholar 

  16. Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett 7:3249–3252

    Article  ADS  Google Scholar 

  17. Lin C, Povinelli ML (2009) Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt Express 17:19371–19381

    Article  ADS  Google Scholar 

  18. Li J, Yu HY, Wong SM, Li X, Zhang G, Lo PGQ, Kwong DL (2009) Design guidelines of periodic Si nanowire arrays for solar cell application. Appl Phys Lett 95:243113-1–243113-3

    ADS  Google Scholar 

  19. Tsakalakos L, Balch J, Fronheiser J, Shih M, LeBoeuf SF, Pietrzykowski M, Codella PJ, Korevaar BA, Sulima OV, Rand J, Davuluru A, Rapol U (2007) Strong broadband optical absorption in silicon nanowire films. J Nanophotonics 1:013552

    Article  Google Scholar 

  20. Stelzner T, Pietsch M, Andra G, Falk F, Ose E, Christiansen S (2008) Silicon nanowire-based solar cells. Nanotechnology 19:295203

    Article  Google Scholar 

  21. Fang H, Li X, Song S, Xu Y, Zhu J (2008) Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 19:255703

    Article  ADS  Google Scholar 

  22. Sivakov V, Andra G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen SH (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554

    Article  ADS  Google Scholar 

  23. Gunawan O, Guha S (2009) Characteristics of vapor-liquid–solid grown silicon nanowire solar cells. Sol Energy Mater Sol Cells 93:1388–1393

    Article  Google Scholar 

  24. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087

    Article  ADS  Google Scholar 

  25. Li X, Li J, Chen T, Tay BK, Wang J, Yu H (2010) Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications. Nanoscale Res Lett 5:1721–1726

    Article  ADS  Google Scholar 

  26. Kumar D, Srivastava SK, Singh PK, Husain M, Kumar V (2011) Fabrication of silicon nanowire arrays based solar cell with improved performance. Sol Energy Mater Sol Cells 95:215–218

    Article  Google Scholar 

  27. Zhao J, Wang A, Green MA, Ferrazza F (1998) 19.8 % efficient ‘honeycomb’ textured multicrystalline and 24.4 % monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993

    Article  ADS  Google Scholar 

  28. Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys 97:114302-1–114302-3

    Article  ADS  Google Scholar 

  29. Yu DP, Bai ZG, Ding Y, Hang QL, Zhang HZ, Wang JJ, Zou YH, Qian W, Xiong GC, Zhou HT, Feng SQ (1998) Nanoscale silicon wires synthesized using simple physical evaporation. Appl Phys Lett 72:3458–3458

    Article  ADS  Google Scholar 

  30. Zhang YF, Tang YH, Peng HY, Wang N, Lee CS, Bello I, Lee ST (1999) Diameter modification of silicon nanowires by ambient gas. Appl Phys Lett 75:1842–1844

    Article  ADS  Google Scholar 

  31. Wang X, Pey KL, Yip CH, Fitzgerald EA, Antoniadis DA (2010) Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cells. J Appl Phys 108:124303, 5 pp

    Article  ADS  Google Scholar 

  32. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, Wang Q, McGehee M, Fan S, Cui Y (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9:279–282

    Article  ADS  Google Scholar 

  33. Lu Y, Lal A (2010) High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett 10:4651–4656

    Article  ADS  Google Scholar 

  34. Jiang P, McFarland MJ (2004) Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc 126:13778–13786

    Article  Google Scholar 

  35. Burmeister F, Schäfle C, Matthes T, Böhmisch M, Boneberg J, Leiderer P (1997) Colloid monolayers as versatile lithographic masks. Langmuir 13:2983–2987

    Article  Google Scholar 

  36. Wagner RS, Ellis WC (1964) Vapor-liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    Article  ADS  Google Scholar 

  37. Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Nucleation and growth of Si nanowires from silicon oxide. Phys Rev B (Condens Matter) 58:16024–16026

    Article  ADS  Google Scholar 

  38. Wang Y, Schmidt V, Senz SD, Gosele U (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189

    Article  ADS  Google Scholar 

  39. Sunkara MK, Sharma S, Miranda R, Lian G, Dickey EC (2001) Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid–solid method. Appl Phys Lett 79:1546–1548

    Article  ADS  Google Scholar 

  40. Iacopi F, Vereecken PM, Schaekers M, Caymax M, Moelans N, Blanpain B, Richard O, Detavernier C, Griffiths H (2007) Plasma-enhanced chemical vapour deposition growth of si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth. Nanotechnology 18:505307-1

    Article  Google Scholar 

  41. Yu J, Chung S, Heath JR (2000) Silicon nanowires: preparation, device fabrication, and transport properties. J Phys Chem B 104:11864–11870

    Article  Google Scholar 

  42. Kamins TI, Williams RS, Basile DP, Hesjedal T, Harris JS (2001) Ti-catalyzed Si nanowires by chemical vapor deposition: microscopy and growth mechanisms. J Appl Phys 89:1008–1016

    Article  ADS  Google Scholar 

  43. Parlevliet D, Cornish JCL (2007) Silicon nanowires: growth studies using pulsed PECVD. Mater Res Soc Symp Proc 989:537–544

    Article  Google Scholar 

  44. Hannon JB, Kodambaka S, Ross FM, Tromp RM (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440:69–71

    Article  ADS  Google Scholar 

  45. Givargizov EI (1975) Fundamental aspects of VLS growth. J Cryst Growth 31:20–30

    Article  ADS  Google Scholar 

  46. Cui Y, Lauhon LJ, Gudiksen MS, Wang J, Lieber CM (2001) Diameter-controlled synthesis of single-crystal silicon nanowires. Appl Phys Lett 78:2214–2216

    Article  ADS  Google Scholar 

  47. Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H (1997) Growth of silicon nanowires Via gold/silane vapor-liquid–solid reaction. J Vac Sci & Technol B (Microelectron Nanometer Struct) 15:554–557

    Article  ADS  Google Scholar 

  48. Ge S, Jiang K, Lu X, Chen Y, Wang R, Fan S (2005) Orientation-controlled growth of single-crystal silicon-nanowire arrays. Adv Mater 17:56–61

    Article  Google Scholar 

  49. Kayes BM, Filler MA, Putnam MC, Kelzenberg MD, Lewis NS, Atwater HA (2007) Growth of vertically aligned Si wire arrays over large areas (1 cm2) with Au and Cu catalysts. Appl Phys Lett 91:103110

    Article  ADS  Google Scholar 

  50. Zhang R, Lifshitz Y, Lee S (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15:635–640

    Article  Google Scholar 

  51. Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Small-diameter silicon nanowire surfaces. Science 299:1874–1877

    Article  ADS  Google Scholar 

  52. Li CP, Sun XH, Wong NB, Lee CS, Lee ST, Teo BK (2002) Ultrafine and uniform silicon nanowires grown with zeolites. Chem Phys Lett 365:22–26

    Article  ADS  Google Scholar 

  53. Kumaravelu G, Alkaisi MM, Bittar A, Macdonald D, Zhao J (2004) Damage studies in dry etched textured silicon surfaces. Curr Appl Phys 4:108–110

    Article  Google Scholar 

  54. Park WI, Zheng G, Jiang X, Tian B, Lieber CM (2008) Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett 8:3004–3009

    Article  ADS  Google Scholar 

  55. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620

    Article  ADS  Google Scholar 

  56. Lauhon LJ, Gudlksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61

    Article  ADS  Google Scholar 

  57. Zhao X, Wei CM, Yang L, Chou MY (2004) Quantum confinement and electronic properties of silicon nanowires. Phys Rev Lett 92:236805

    Article  ADS  Google Scholar 

  58. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston

    MATH  Google Scholar 

  59. Yariv A, Yeh P (2006) Photonics: optical electronics in modern communications, 6th edn. Oxford University Press, New York

    Google Scholar 

  60. Li J, Yu HY, Wong SM, Zhang G, Sun X, Lo PGQ, Kwong DL (2009) Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl Phys Lett 95:033102-1–033102-3

    ADS  Google Scholar 

  61. Henry MD, Walavalkar S, Homyk A, Scherer A (2009) Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars. Nanotechnology 20:255305

    Article  ADS  Google Scholar 

  62. Bao H, Ruan X (2010) Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt Lett 35(20):3378–3380

    Article  Google Scholar 

  63. Street RA, Wong WS, Paulson C (2009) Analytic model for diffuse reflectivity of silicon nanowire mats. Nano Lett 9(10):3494–3497

    Article  ADS  Google Scholar 

  64. Haynos J, Allison J, Arndt R, Meulenberg A (1974) The COMSAT nonreflective silicon solar cell: a second generation improved cell. International Conference of Photovoltaic Power Generation, Hamburg, p 487

    Google Scholar 

  65. Sopori BL, Pryor RA (1983) Design of antireflection coatings for textured silicon solar cells. Solar Cells 8:249–261

    Article  ADS  Google Scholar 

  66. Peng K, Wang X, Lee ST (2008) Silicon nanowire array photoelectrochemical solar cells. Appl Phys Lett 92:163103-1–163103-3

    ADS  Google Scholar 

  67. Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier KB (2011) Multicolored vertical silicon nanowires. Nano Lett 11:1851–1856

    Article  ADS  Google Scholar 

  68. Boden SA, Bagnall DM (2008) Tunable reflection minima of nanostructured antireflective surfaces. Appl Phys Lett 93:133108-1–133108-3

    Article  ADS  Google Scholar 

  69. Adachi MM, Anantram MP, Karim KS (2010) Optical properties of crystalline-amorphous core-shell silicon nanowires. Nano Lett 10:4093–4098

    Article  ADS  Google Scholar 

  70. Muskens OL, Rivas JG, Algra RE, Bakkers EP, Lagendijk A (2008) Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett 8:2638–2642

    Article  ADS  Google Scholar 

  71. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  ADS  Google Scholar 

  72. Wu C, Crouch CH, Zhao L, Carey JE, Younkin R, Levinson JA, Mazur E, Farrell RM, Gothoskar P, Karger A (2001) Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett 78:1850–1852

    Article  ADS  Google Scholar 

  73. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  ADS  Google Scholar 

  74. Dong Y, Yu G, McAlpine MC, Lu W, Lieber CM (2008) Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett 8:386–391

    Article  ADS  Google Scholar 

  75. Taguchi M, Kawamoto K, Tsujge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O (2000) HITTM cells-high-efficiency crystalline Si cells with novel structure. Prog Photovoltaics Res Appl 8:503–513

    Article  Google Scholar 

  76. Rohatgi A, Davis JR, Hopkins RH, McMullin PG (1983) A study of grown-in impurities in silicon by deep-level transient spectroscopy. Solid State Electron 26:1039–1051

    Article  ADS  Google Scholar 

  77. Younkin R, Carey JE, Mazur E, Levinson JA, Friend CM (2003) Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J Appl Phys 93:2626–2629

    Article  ADS  Google Scholar 

  78. Jung J, Guo Z, Jee S, Um H, Park K, Lee J (2010) A strong antireflective solar cell prepared by tapering silicon nanowires. Opt Express 18:A286–A292

    Article  ADS  Google Scholar 

  79. Wilson SJ, Hutley MC (1982) The optical properties of moth eye antireflection surfaces. J Mod Opt 29:993–1009

    Google Scholar 

  80. Rayleigh FRS (1880) On reflection of vibrations at the confines of two media between which the transition is gradual. Proc Lond Math Soc 11:51–56

    Article  MathSciNet  MATH  Google Scholar 

  81. Southwell WH (1983) Gradient-index antireflection coatings. Opt Lett 8:584–586

    Article  ADS  Google Scholar 

  82. Poitras D, Dobrowolski JA (2004) Toward perfect antireflection coatings. 2. theory. Appl Opt 43:1286–1295

    Article  ADS  Google Scholar 

  83. Zaidi SH, Ruby DS, Gee JM (2001) Characterization of random reactive ion etched-textured silicon solar cells. IEEE Trans Electron Devices 48:1200–1206

    Article  ADS  Google Scholar 

  84. Yu Z, Gao H, Wu W, Ge H, Chou SY (2003) Fabrication of large area subwavelength antireflection structures on si using trilayer resist nanoimprint lithography and liftoff. J Vac Sci Technol B 21:2874–2877

    Article  Google Scholar 

  85. Lee C, Bae SY, Mobasser S, Manohara H (2005) A novel silicon nanotips antireflection surface for the micro sun sensor. Nano Lett 5:2438–2442

    Article  ADS  Google Scholar 

  86. Chang C, Wang Y-F, Kanamori Y, Shih J-J, Kawai Y, Lee C-K, Wu K-C, Esashi M (2005) Etching submicrometer trenches by using the bosch process and its application to the fabrication of antireflection structures. J Micromech Microeng 15:580–585

    Article  Google Scholar 

  87. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1050

    Article  ADS  Google Scholar 

  88. Qi J, Belcher AM, White JM (2003) Spectroscopy of individual silicon nanowires. Appl Phys Lett 82:2616–2618

    Article  ADS  Google Scholar 

  89. Bhattacharya S, Banerjee D, Adu KW, Samui S, Bhattacharyya S (2004) Confinement in silicon nanowires: optical properties. Appl Phys Lett 85:2008–2010

    Article  ADS  Google Scholar 

  90. Sham TK, Naftel SJ, Kim P-SG, Sammynaiken R, Tang YH, Coulthard I, Moewes A, Freeland JW, Hu Y-F, Lee ST (2007) Electronic structure and optical properties of silicon nanowires: a study using x-ray excited optical luminescence and x-ray emission spectroscopy. Phys Rev B (Condens Matter Mater Phys) 70:45313-1

    Google Scholar 

  91. Guichard AR, Barsic DN, Sharma S, Kamins TI, Brongersma ML (2006) Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires. Nano Lett 6:2140–2144

    Article  ADS  Google Scholar 

  92. Dovrat M, Arad N, Zhang X-H, Lee S-T, Sa’ar A (2007) Optical properties of silicon nanowires from cathodoluminescence imaging and time-resolved photoluminescence spectroscopy. Phys Rev B (Condens Matter Mater Phys) 75:205343-1

    ADS  Google Scholar 

  93. Zhang ZY, Wu XL, Shen JC, Yang LW, Shi Y, Chu PK, Siu GG (2005) Light emission from as-prepared and oxidized Si nanowires with diameters of 5–15 nm. J Cryst Growth 285:620–626

    Article  ADS  Google Scholar 

  94. Nassiopoulos AG, Grigoropoulos S, Papadimitriou D (1996) Electroluminescent device based on silicon nanopillars. Appl Phys Lett 69:2267–2267

    Article  ADS  Google Scholar 

  95. Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8:20–28

    Article  Google Scholar 

  96. Zhou XT, Zhang RQ, Peng HY, Shang NG, Wang N, Bello I, Lee CS, Lee ST (2000) Highly efficient and stable photoluminescence from silicon nanowires coated with SiC. Chem Phys Lett 332:215–218

    Article  ADS  Google Scholar 

  97. Ma DDD, Lee ST, Shinar J (2005) Strong polarization-dependent photoluminescence from silicon nanowire fibers. Appl Phys Lett 87:33107-1

    Google Scholar 

  98. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    Article  ADS  Google Scholar 

  99. Kelzenberg MD, Turner-Evans DB, Kayes BM, Filler MA, Putnam MC, Lewis NS, Atwater HA (2008) Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett 8:710–714

    Article  ADS  Google Scholar 

  100. Khorasaninejad M, Saini SS (2010) Silicon nanowire optical waveguide (SNOW). Opt Express 18:23442–23457

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. P. Anantram for support and helpful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adachi, M.M., Khorasaninejad, M., Saini, S.S., Karim, K.S. (2013). Optical Properties of Silicon Nanowires. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics