Skip to main content

Optical Properties of Oxide Films Dispersed with Nanometal Particles

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization
  • 5148 Accesses

Abstract

Solid materials reveal some special behaviors like quantum effects in semiconductors and surface-enhanced effects in metals by decreasing their diameters. In this review, the enhancement of the optical response due to the electric field of the light is reviewed as the recent active field of plasmonics. The production methods of various metal nanoparticles are summarized for the bared state and for the embedded state within the dielectric medium. The features of the optical properties of these nanoparticles are reviewed, and typical formula to reproduce the absorption spectra due to the surface plasmon resonance is summarized. Several applications of these systems are shortly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hosoya Y, Suga T, Yanagawa T, Kurokawa Y (1997) Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J Appl Phys 81:1475

    Article  ADS  Google Scholar 

  2. Gang Y, Song-You W, Ming X, Liang-Yao C (2006) Theoretical calculation of the optical properties of gold nanoparticles. J Korean Phys Soc 49:2108

    Google Scholar 

  3. Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc 147:145

    Article  Google Scholar 

  4. Kerker M (1986) Classics and classicists of colloid and interface science: 1. Michael Faraday. J Colloid Interf Sci 112:302

    Article  Google Scholar 

  5. Turkevich J, Stevenson PC, Hiller J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55

    Article  Google Scholar 

  6. Turkevich J (1985) Colloidal gold. Part II Colour, coagulation, adhesion, alloying and catalytic properties. Gold Bull 18:86

    Article  Google Scholar 

  7. Aika K, Ban LL, Oukra I, Namba S, Turkevich J (1976) Chemisorption and catalytic activity of a set of platinum catalysts. J Res Inst Catal Hokkaido Univ 24:54

    Google Scholar 

  8. Rampio LD, Nord FF (1941) Preparation of palladium and platinum synthetic high polymer catalysts and the relationship between particle size and rate of hydrogenation. J Am Chem Soc 63:2745

    Article  Google Scholar 

  9. Rampio LD, Nord FF (1941) Applicability of palladium synthetic high polymer catalysts. J Am Chem Soc 63:3268

    Article  Google Scholar 

  10. Dunsworth WP, Nord FF (1950) Investigations on the mechanism of catalytic hydrogena- tions XV. Studies with colloidal iridium. J Am Chem Soc 72:4197

    Article  Google Scholar 

  11. Hirai H, Chawanya H, Toshima N (1985) Selective hydrogenation of cyclooctadienes using colloidal palladium in poly(N-vinyl-2-pyrrolidone). Bull Chem Soc Jpn 58:682

    Article  Google Scholar 

  12. Yonezawa T, Waseda Y, Muramatsu A (2004) Morphology-controlled materials: advanced materials processing and characterization. Springer, Berlin, pp 85–112

    Google Scholar 

  13. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179

    Article  Google Scholar 

  14. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6:102

    Article  Google Scholar 

  15. Komiyama M, Hirai H (1983) Colloidal rhodium dispersions protected by cyclodextrins. Bull Chem Soc Jpn 56:2833

    Article  Google Scholar 

  16. Lewis LN, Lewis N, Uriate RJ (1992) In homogeneous transi- tion metal catalyzed reactions. Adv Chem Ser 230:541

    Article  Google Scholar 

  17. Larpent C, Brisse-Le Menn F, Ptin H (1991) New highly water-soluble surfactants stabilize colloidal rhodium(0) suspensions useful in biphasic catalysis. J Mol Catal 65:25

    Article  Google Scholar 

  18. Henry A, Bingham J, Ringe E, Marks L, Schatz G, Van Duyne R (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291

    Article  Google Scholar 

  19. Sau T, Rogach A, Jaeckel F, Kuar T, Feldman J, Klar T (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805

    Article  Google Scholar 

  20. Sau T, Rogach A (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781

    Article  Google Scholar 

  21. Cuenya B (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127

    Article  ADS  Google Scholar 

  22. Khlebtsov N, Dykman L (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111:1

    Article  ADS  Google Scholar 

  23. Noguez C, Garzon I (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757

    Article  Google Scholar 

  24. Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C 10:33

    Article  Google Scholar 

  25. Love S, Marquis B, Haynes C (2008) Recent advances in nanomaterial plasmonics: fundamental studies and applications. Appl Spectrosc 62:346A

    Article  ADS  Google Scholar 

  26. Schwartzberg A, Zhang J (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112:10323

    Article  Google Scholar 

  27. Karmakar B, Som T, Singh S, Nath M (2010) Nanometal-glass hybrid nanocomposites: synthesis, properties and applications. Trans Indian Ceram Soc 69:171

    Google Scholar 

  28. Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nagasawa H, Nakamoto M, Yamaguchi T, Yase K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327:524

    Article  ADS  Google Scholar 

  29. Hirai H, Nakao Y, Toshima N (1978) Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J Macromol Sci A12:1117

    Google Scholar 

  30. Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers. J Macromol Sci A13:727

    Google Scholar 

  31. Hirai H (1979) Formation and catalytic functionality of synthetic polymer-noble metal colloid. J Macromol Sci A14:633

    Google Scholar 

  32. Toshima N, Wang Y (1993) Novel preparation, characterization, and catalytic properties of Cu/Pd bimetallic clusters. Chem Lett 22:1611

    Google Scholar 

  33. Wang Y, Liu H, Toshima N (1996) Nanoscopic naked Cu/Pd powder as air-resistant active catalyst for selective hydration of acrylonitrile to acrylamide. J Phys Chem 100:19533

    Article  Google Scholar 

  34. Lu P, Toshima N (2000) Catalysis of polymer-protected Ni/Pd bimetallic nano-clusters for hydrogenation of nitrobenzene derivatives. Bull Chem Soc Jpn 73:751

    Article  Google Scholar 

  35. Lu P, Teranishi T, Asakura K, Miyake M, Toshima N (1999) Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catarysis for hydrogenation of nitrobenzene. J Phys Chem B 103:9673

    Article  Google Scholar 

  36. Sapieszko RS, Matijevic E (1981) Hydrothermal formations of (hydrous) oxides on metal surfaces. Corrosion 37:152

    Article  Google Scholar 

  37. Yonezawa T, Tominaga T, Richard D (1996) Stabilizing structure of tertiary amine-protected rhodium colloid dispersions in chloroform. J Chem Soc Dalton Trans 1996:783

    Google Scholar 

  38. Drognat Landre P, Richard D, Draye M, Gallezot P, Lemaire M (1994) Colloidal Rhodium: a new catalytic system for the reduction of dibenzo-18-crown-6 ether. J Catal 147:214

    Article  Google Scholar 

  39. Schmid G, Pfell R, Bose R, Bandermann F, Meyer S, Calls GHM, van der Velden JWA (1981) Au55[P(C6H5)3]12Cl6 – a gold cluster of unusual size. Chem Ber 114:3634

    Article  Google Scholar 

  40. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely CJ (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 1994:801

    Google Scholar 

  41. Yamanoi Y, Yonezawa T, Shirahata N, Nishihara H (2004) Immobilization of gold nanoparticles onto silicon surfaces by Si − C covalent bonds. Langmuir 20:1054

    Article  Google Scholar 

  42. Yonezawa T, Matsune H, Kimizuka N (2001) Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles. Adv Mater 13:140

    Article  Google Scholar 

  43. Yonezawa T, Genda H, Koumoto K (2003) Cationic silver nanoparticles dispersed in water prepared from insoluble salts. Chem Lett 32:194

    Article  Google Scholar 

  44. Henglein A, Tausch-Treml R (1981) Optical absorption and catalytic activity of subcolloidal and colloidal silver in aqueous solution: a pulse radiolysis study. J Collid Interface Sci 80:84

    Article  Google Scholar 

  45. Belloni J, Delcourt MO, Leclere C (1982) Radiation-induced preparation of metal catalysts: iridium aggregates. Nouv J Chim 6:507

    Google Scholar 

  46. Torigoe K, Remita H, Beaunier P, Belloni J (2002) Radiation-induced reduction of mixed silver and rhodium ionic aqueous solution. Rad Phys Chem 64:215

    Article  ADS  Google Scholar 

  47. Belloni J, Mostafavi M, Remita H, Marignir JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocelloids. New J Chem 22:1239

    Article  Google Scholar 

  48. Toshima N, Takahashi T, Hirai H (1988) Polymerized micelle-protected platinum clusters preparation and application to catalyst for visible light-induced hydrogen generation. J Macromol Sci Chem A25:669

    Google Scholar 

  49. Hada H, Yonezawa Y, Yoshida A, Kuratake A (1976) Photoreduction of silver ion in aqueous and alcoholic solutions. J Phys Chem 80:2728

    Article  Google Scholar 

  50. Toshima N, Takahashi T (1992) Colloidal dispersion of platinum and palladium cluster embedded in micelles. Preparation and application to catalysis for hydrogenation of olefins. Bull Chem Soc Jpn 65:400

    Article  Google Scholar 

  51. Kreibig U (1977) Anomalous frequency and temperature dependence of the optical absorption of small gold particles. J Physique 38:97

    Google Scholar 

  52. Bloemer MJ, Haus JW, Ashley PR (1990) Degenerate four-wave mixing in colloidal gold as a function of particle size. J Opt Soc Am B7:790

    ADS  Google Scholar 

  53. Doremus RH, Rao P (1996) Optical properties of nanosized gold particles. J Matter Res 11:2834

    Article  ADS  Google Scholar 

  54. Kineri T, Mori M, Kadono K, Sakaguchi T, Miya M, Wakabayashi H, Tsuchiya T (1993) Preparation and optical properties of gold-dispersed BaTiO3 thin films. J Ceram Soc Jpn 101:1340

    Article  Google Scholar 

  55. Tanahashi I, Yoshida M, Manabe Y, Tohda T (1996) Characterization and optical properties of Au/SiO2 composite thin films. Suf Rev Lett 3:1071

    Article  Google Scholar 

  56. Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J Appl Phys 79:1244

    Article  ADS  Google Scholar 

  57. Yang L, Osborne DH, Haglund RF Jr, Magruder RH, White CW, Zuhr RA, Hosono H (1996) Probing interface properties of nanocomposites by third-order nonlinear optics. Appl Phys A62:403

    ADS  Google Scholar 

  58. Magruder RH, Yang LI, Haglund RF Jr, White CW, Yang L, Dorsinville R, Alfano RR (1993) Optical properties of gold nanocluster composites formed by deep ion implantation in silica. Appl Phys Lett 62:1730

    Article  ADS  Google Scholar 

  59. Arnold GW (1975) Near-surface nucleation and crystallization of an ion-implanted Lithia-alumina-silica glass. J Appl Phys 46:4466

    Article  ADS  Google Scholar 

  60. Matsuoka J, Mizutani R, Kaneko S, Nasu H, Kamiya K (1992) Preparation of Au-doped silica glass by sol-gel method. J Ceram Soc Jpn 100:599

    Article  Google Scholar 

  61. Matsuoka J, Mizutani R, Kaneko S, Nasu H, Kamiya K, Kadono K, Sakaguchi T, Miya M (1993) Sol-gel processing and optical nonlinearity of gold colloid-doped silica glass. J Ceram Soc Jpn 101:53

    Article  Google Scholar 

  62. Trimm DL, Onsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31

    Article  Google Scholar 

  63. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067

    Article  Google Scholar 

  64. Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007) Gold nanocages for biomedical applications. Adv Mater 19:3177

    Article  Google Scholar 

  65. McLellan JM, Li ZY, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013

    Article  ADS  Google Scholar 

  66. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60

    Article  Google Scholar 

  67. Wiley BJ, Sun Y, Xia Y (2005) Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 21:8077

    Article  Google Scholar 

  68. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176

    Article  ADS  Google Scholar 

  69. Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077

    Article  ADS  Google Scholar 

  70. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666

    Article  Google Scholar 

  71. Kan C-X, Zhu J-J, Zhu X-G (2008) Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms. J Phys D 41:155304

    Article  ADS  Google Scholar 

  72. Siekkinen AR, McLellan JM, Chen J, Xia Y (2006) Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett 432:491

    Article  ADS  Google Scholar 

  73. Lim B, Camargo PH, Xia Y (2008) Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir 24:10437

    Article  Google Scholar 

  74. Lu X, Yavuz MS, Tuan HY, Korgel BA, Xia Y (2008) Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine − AuCl complexes formed via aurophilic interaction. J Am Chem Soc 130:8900

    Article  Google Scholar 

  75. Wu H-L, Kuo C-H, Huang MH (2010) Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 26:12307

    Article  Google Scholar 

  76. Lu X, Tuan TY, Korgel BA, Xia Y (2008) Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem Eur J 14:1584

    Article  Google Scholar 

  77. Li C, Shuford KL, Park QH, Cai W, Li Y, Lee EJ, Cho So O (2007) High-yield synthesis of single-crystalline gold nanooctahedra. Angew Chem Int Ed 46:3264

    Article  Google Scholar 

  78. Seo D, Yoo CI, Chung IS, Park SM, Ryu S, Song H (2008) Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J Phys Chem C 112:2469

    Article  Google Scholar 

  79. Xiong Y, Chen J, Wiley B, Xia Y (2005) Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J Am Chem Soc 127:7332

    Article  Google Scholar 

  80. Xiong Y, Cai H, Wiley BJ, Wang J, Kim MJ, Xia Y (2007) Synthesis and mechanistic study of palladium nanobars and nanorods. J Am Chem Soc 129:3665–75

    Article  Google Scholar 

  81. Xiong Y, McLellan JM, Chen J, Yin Y, Li ZY, Xia Y (2005) Kinetically controlled synthesis of triangular and hexagonal nanoplates of Pd and their SPR/SERS properties. J Am Chem Soc 127:17118

    Article  Google Scholar 

  82. Korte KE, Skrabalak SE, Xia Y (2008) Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem 18:437

    Article  Google Scholar 

  83. Draine BT, Flatau PJ (1994) Discrete dipole approximation for scattering calculations. J Opt Soc Am A 11:1491

    Article  ADS  Google Scholar 

  84. Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans Roy Soc A 203:385–420

    Article  ADS  Google Scholar 

  85. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten and Leitfahigkeiten der Mischkorper aus isotropen Substanzen. Annalen der Physik 24:636–64

    Google Scholar 

  86. Elliot RJ, Krumhansl JA, Leath PL (1974) The theory and properties of randomly oriented disordered crystals and related physical systems. Rev Modern Phys 46:465–543

    Article  MathSciNet  ADS  Google Scholar 

  87. Looyenga H (1965) Dielectric constants of heterogeneous mixtures. Physica 31:401–6

    Article  ADS  Google Scholar 

  88. Lichtenecker K (1926) Dielectric constant of natural and synthetic mixtures. Phys Z 27:115

    MATH  Google Scholar 

  89. Moulson A, Herbert J (2003) Electroceramics. Wiley, New York

    Book  Google Scholar 

  90. Stroud D, Pan FP (1978) Self-consistent approach to electromagnetic wave propagation in composite media: application to model granular metals. Phys Rev B 17:1602–10

    Article  ADS  Google Scholar 

  91. Wachniewski A, McClung HB (1986) New approach to effective medium for composite materials: application to electromagnetic properties. Phys Rev B 33:8053–9

    Article  ADS  Google Scholar 

  92. Bohren C, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, NewYork

    Google Scholar 

  93. Bussemer P (1989) Optical properties of inhomogeneous media: T-matrix approach (Review). Astron Nachr 310:311–4

    Article  ADS  Google Scholar 

  94. Chylek P, Srivastava V (1983) Dielectric constant of a composite inhomogeneous medium. Phys Rev B 27:5098–105

    Article  ADS  Google Scholar 

  95. Chylek P, Videen G, Geldart D, Dobbie J, Tso HW (2000) Effective medium approximation for heterogeneous particles, in light scattering by nonspherical particles: theory, measurements, and geophysical applications. Academic, New York, pp 273–308

    Book  Google Scholar 

  96. Stognienko R, Henning T, Ossenkopf V (1995) Optical properties of coagulated particles. Astron Astrophys 296:797–809

    ADS  Google Scholar 

  97. Wakaki M, Yokoyama E (2010) Dielectric analysis on optical properties of zro2 thin films dispersed with silver nanoparticles. J Nonlinear Opt Phys Mater 19:835

    Article  ADS  Google Scholar 

  98. Yokoyama E, Sakata H, Wakaki M (2009) Sol-gel synthesis and characterization of Ag nanoparticles in ZrO2 thin films. J Mater Res 24:2541

    Article  ADS  Google Scholar 

  99. Wakaki M, Yokoyama E (2011) Optical properties of dielectric films dispersed with metal nanoparticles and applications to optically functional materials. Proc SPIE 8173:81731 G.1

    Google Scholar 

  100. Niidome Y, Hori A, Sato T, Yamada S (2000) Enormous size growth of thiol-passivated gold nanoparticles induced by near-IR laser light. Chem Lett 129:310

    Google Scholar 

  101. Niidome Y, Hori A, Takahashi H, Goto Y, Yamada S (2001) Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane. Nano Lett 1:365

    Article  ADS  Google Scholar 

  102. Akiyama T, Nakada M, Terasaki N, Yamada S (2006) Photocurrent enhancement in a porphyrin-gold nanoparticle nanostructure assisted by localized plasmon excitation. Chem Commun 28:395–397

    Article  Google Scholar 

  103. Akiyama T, Aiba K, Hoashi K, Wang M, Sugawa K, Yamada S (2010) Enormous enhancement in photocurrent generation using electrochemically fabricated gold nanostructures. Chem Commun 46:306

    Article  Google Scholar 

  104. Yamada S, Niidome Y (2006) Gold nanorods: preparation, characterization, and applications to sensing and photonics. In: Kawata S, Masuhara H (eds) Nanoplasmonics from fundamentals to applications, vol 2. Elsevier, Amsterdam, p 255

    Chapter  Google Scholar 

  105. Jylha L, Sihvola A (2007) Equation for the effective permittivity of particle-filled composites for material design applications. J Phys D 40:4966

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moriaki Wakaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wakaki, M., Yokoyama, E. (2013). Optical Properties of Oxide Films Dispersed with Nanometal Particles. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics