Skip to main content

Tailoring the Optical Properties of Silver Nanomaterials for Diagnostic Applications

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization
  • 5132 Accesses

Abstract

Metallic silver (Ag) nanostructures play an essential role in determining sensitivity, specificity, and application in the context of the optical diagnostic techniques. In order to obtain the best sensitivity, some detection techniques require stringent Ag nanostructures, and it is for this reason that most such methods have not yet been commercialized. As many of the detection or enhancement phenomena are associated with the optical properties of the metallic silver nanostructures such as surface plasmon resonance (SPR), fluorescence quenching/enhancement, and surface-enhanced Raman scattering (SERS), the quest for the “ideal” nanostructured silver materials to provide the best response has been central to the situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willets KA, Van Duyne RP (2007) Localized surface Plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297; Annual Reviews: Palo Alto

    Article  ADS  Google Scholar 

  2. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  Google Scholar 

  3. Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112:5605–5617

    Article  Google Scholar 

  4. Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    Article  ADS  Google Scholar 

  5. Thompson DG, Enright A, Faulds K, Smith WE, Graham D (2008) Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal Chem 80:2805–2810

    Article  Google Scholar 

  6. Tokareva I, Hutter E (2004) Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films. J Am Chem Soc 126:15784–15789

    Article  Google Scholar 

  7. Vidal BC, Deivaraj TC, Yang J, Too H-P, Chow G-M, Gan LM, Lee JY (2005) Stability and hybridization-driven aggregation of silver nanoparticle-oligonucleotide conjugates. New J Chem 29:812–816

    Article  Google Scholar 

  8. Cao Y, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  Google Scholar 

  9. Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    Article  Google Scholar 

  10. Liu S, Zhang Z, Han M (2005) Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal Chem 77:2595–2600

    Article  Google Scholar 

  11. Quaroni L, Chumanov G (1999) Preparation of polymer-coated functionalized silver nanoparticles. J Am Chem Soc 121:10642–10643

    Article  Google Scholar 

  12. Chen Y, Aveyard J, Wilson R (2004) Gold and silver nanoparticles functionalized with kown numbers of oligonucleotides per particle for DNA detection. Chem Commun 2804–2805

    Google Scholar 

  13. Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  ADS  Google Scholar 

  14. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  ADS  Google Scholar 

  15. Metraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415

    Article  Google Scholar 

  16. Aherne D, Ledwith DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mat 18:2005–2016

    Article  Google Scholar 

  17. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690–696

    Article  ADS  Google Scholar 

  18. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Dyune RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065

    Article  ADS  Google Scholar 

  19. Metraux GS, Cao YC, Jin R, Mirkin CA (2003) Triangular nanoframes made of gold and silver. Nano Lett 3:519–522

    Article  ADS  Google Scholar 

  20. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  ADS  Google Scholar 

  21. Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654

    Article  Google Scholar 

  22. Kim JY, Lee JS (2010) Synthesis and thermodynamically controlled anisotropic assembly of DNA-silver nanoprism conjugates for diagnostic applications. Chem Mater 22:6684–6691

    Article  Google Scholar 

  23. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  24. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    Article  Google Scholar 

  25. Baker JL, Widmer-Copper A, Toney MF, Geissler PL, Alivisatos AP (2010) Device-scale perpendicular alignment of colloidal nanorods. Nano Lett 10:195–201

    Article  ADS  Google Scholar 

  26. Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, Senesi AJ, Mirkin CA (2010) DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat Mater 9:913–917

    Article  ADS  Google Scholar 

  27. Kim J-Y, Lee J-S (2009) Synthesis and thermally reversible assembly of DNA-gold nanoparticle cluster conjugates. Nano Lett 9:4564–4569

    Article  ADS  Google Scholar 

  28. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076

    Article  Google Scholar 

  29. Sun YG (2010) Silver nanowires – unique templates for functional nanostructures. Nanoscale 2:1626–1642

    Article  ADS  Google Scholar 

  30. Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554

    Article  Google Scholar 

  31. Zhang J, Langille MR, Mirkin CA (2011) Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds. Nano Lett 11:2495–2498

    Article  ADS  Google Scholar 

  32. Chang S, Chen K, Hua Q, Ma Y, Huang W (2011) Evidence for the growth mechanisms of silver nanocubes and nanowires. J Phys Chem C 115:7979–7986

    Article  Google Scholar 

  33. Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS (2009) Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Ed 48:3806–3809

    Article  Google Scholar 

  34. Sun YG, Gates B, Mayers B, Xia YN (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168

    Article  ADS  MATH  Google Scholar 

  35. Sun YG, Xia YN (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833–837

    Article  Google Scholar 

  36. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3:667–669

    Article  ADS  Google Scholar 

  37. Hu JQ, Chen Q, Xie ZX, Han GB, Wang RH, Ren B, Zhang Y, Yang ZL, Tian ZQ (2004) A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv Funct Mater 14:183–189

    Article  Google Scholar 

  38. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 617–618

    Google Scholar 

  39. Han SH, Lee J-S (2012) Synthesis of length-controlled polyvalent silver nanowire-DNA conjugates for sensitive and selective detection of DNA targets. Langmuir 28:828–832

    Article  Google Scholar 

  40. Oh J-H, Lee J-S (2010) Salt concentration-induced dehybridisation of DNA-gold nanoparticle conjugate assemblies for diagnostic applications. Chem Commun 46:6382–6384

    Article  Google Scholar 

  41. Andrew P, Ilie A (2007) Functionalised silver nanowire structures. J Phys: Conf Ser 61:36–40

    Article  ADS  Google Scholar 

  42. Park H-G, Joo JH, Kim H-G, Lee J-S (2012) Shape-dependent reversible assembly properties of polyvalent DNA silver nanocube conjugates. J Phys Chem C 116:2278–2284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, JS. (2013). Tailoring the Optical Properties of Silver Nanomaterials for Diagnostic Applications. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics