Skip to main content

Size-Dependent Optical Properties of Metallic Nanostructures

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization

Abstract

Metallic nanostructures are a key component of current and future nanotechnology devices since their individual properties convey the appropriate characteristics for applications in several fields of science and technology. At the nanoscale size, optical properties of metal structures depend not only on the type of material but also on the dimensions and geometry of the structure, suggesting the possibility of tuning optical resonances through appropriate engineering. In this chapter, we will describe methods for calculation of size-dependent optical properties of metal nanostructures and show the successful use of extinction spectroscopy technique to determine the size of nanoparticles (Nps).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yogeswaran U, Chen S-M (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313

    Google Scholar 

  2. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructure. Chem Rev 111:3913–3961

    Google Scholar 

  3. Hirsch L et al (2006) Metal nanoshells. Ann Biomed Eng 34:15–22

    Google Scholar 

  4. Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their Use in controllingthe radiative properties of nanoemitters. Chem Rev 111:3888–3912

    Google Scholar 

  5. Brambilla G (2010) Optical fibre nanowires and microwires: a review. J Opt 12:043001, 1–19

    ADS  Google Scholar 

  6. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686

    ADS  Google Scholar 

  7. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28

    Google Scholar 

  8. Wang W, Yang Q, Fan F, Hongxing X, Wang ZL (2011) Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11:1603–1608

    ADS  Google Scholar 

  9. Ma L-C, Zhang Y, Zhang J-M, Ke-Wei X (2011) First-principles study on structural and electronic properties of copper nanowire encapsulated into GaN nanotube. Physica B 406:3502–3507

    ADS  Google Scholar 

  10. Long Y-Z, Li M-M, Changzhi G, Wan M, Duvail J-L, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442

    Google Scholar 

  11. Barnard ES, Pala RA, Brongersma ML (2011) Photocurrent mapping of near-field optical antenna resonances. Nat Nanotechnol 6:588–593

    ADS  Google Scholar 

  12. Makino K, Tominaga J, Hase M (2011) Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Opt Express 19:1260–1270

    ADS  Google Scholar 

  13. Alekseeva AV, Bogatyrev VA, Dykman LA, Khlebtsov BN, Trachuk LA, Melnikov AG, Khlebtsov NG (2005) Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Appl Opt 49:6285–6295

    ADS  Google Scholar 

  14. Encina ER, Coronado EA (2007) Resonance conditions for multipole plasmon excitations in noble metal nanorods. J Phys Chem C 111(45):16796–16801

    Google Scholar 

  15. Perassi EM, Hernandez-Garrido JC, Moreno MS, Encina ER, Coronado EA, Midgley PA (2010) Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices. Nano Lett 10:2097–2104

    ADS  Google Scholar 

  16. Scaffardi LB, Pellegri N, de Sanctis O, Tocho LO (2005) Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology 16:158–163

    ADS  Google Scholar 

  17. Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface plasmon fields and coupling in the hollow gold nanoparticles and surface-enhanced Raman spectroscopy. Theory and experiment. J Phys Chem C 114:7436–7443

    Google Scholar 

  18. Ferrara MA, Rendina I, Basu SN, Dal Negro L, Sirleto L (2012) Raman amplifier based on amorphous silicon nanoparticles. Int J Photoenergy 2012:254946, 1–5

    Google Scholar 

  19. Eustis S, El-Sayed MA (2006) Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J Appl Phys 100:044324, 1–7

    ADS  Google Scholar 

  20. Jian Z, Junwu Z, Yongchang W (2004) Influence of surface charge density on the plasmon resonance modes in gold nanoellipsoid. Physica B 353:331–335

    ADS  Google Scholar 

  21. Zhu J (2005) Shape dependent full width at half maximum of the absorption band in gold nanorods. Phys Lett A 339:466–471

    ADS  Google Scholar 

  22. Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov NA (2011) New T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J Phys Chem C 115:6317–6323

    Google Scholar 

  23. Encina ER, Perassi EM, Coronado EA (2009) Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires. J Phys Chem A 113:4489–4497

    Google Scholar 

  24. Pavlovic G, Malpuech G, Gippius NA (2010) Dispersion and polarization conversion of whispering gallery modes in nanowires. Phys RevB 82:195328, 1–8

    ADS  Google Scholar 

  25. Scaffardi LB, Lester M, Skigin D, Tocho JO (2007) Optical extinction spectroscopy used to characterize metallic nanowires. Nanotechnology 18:315402, 1–8

    Google Scholar 

  26. Brambilla G (2010) Accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices. Nano Lett 10:2097–2104

    Google Scholar 

  27. Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Field polarization and polarization charge distributions in plasmon resonant particles. New J Phys 2:271–279

    Google Scholar 

  28. Scaffardi L, Tocho JO, Yebrin L, Cantera C (1996) Sizing particles used in the leather industry by light scattering. Opt Eng 35(1):52–56

    ADS  Google Scholar 

  29. Garcés Vernier I, Sotolongo O, Hernández MP, Scaffardi L, García-Ramos JV, Rivas L (2000) Determination of particle size distribution of particles on aerosols and suspensions by ultraviolet–visible-near infrared absorbance measurements. A new procedure for absorbing particles. Phys Status Solid B 220:583–586

    ADS  Google Scholar 

  30. Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology 17:1309–1315

    ADS  Google Scholar 

  31. Scaffardi LB, Lester M, Skigin D, Tocho JO (2007) Optical extinction spectroscopy used to characterize metallic nanowires. Nanotechnology 18:315402–315410

    Google Scholar 

  32. Scaffardi LB, Tocho JO (2008) Absorption spectra of tiny gold and silver objects. J Luminisc 128(5–6):828–830

    Google Scholar 

  33. Torchia GA, Scaffardi LB, Méndez C, Moreno P, Tocho JO, Roso L (2008) Optical extinction for determining size distribution of gold nanoparticles fabricated by ultrashort pulsed laser ablation. Appl Phys A Mater Sci Process 93(4):967–971

    ADS  Google Scholar 

  34. Roldán MV, Scaffardi LB, de Sanctis O, Pellegri N (2008) Optical properties and extinction spectroscopy to characterize the synthesis of amine capped silver nanoparticles. Mater Chem Phys 112:984–990

    Google Scholar 

  35. Schinca DC, Scaffardi LB (2008) Core and shell sizing of small silver coated nanospheres by optical extinction spectroscopy. Nanotechnology 19:495712–495720

    Google Scholar 

  36. Schinca DC, Scaffardi LB, Videla FA, Torchia GA, Moreno P, Roso L (2009) Silver-silver oxide core-shell nanoparticles by femtosecond laser ablation. Characterization by extinction spectroscopy. J Phys D: Appl Phys 42:215102–215111

    ADS  Google Scholar 

  37. Videla FA, Torchia GA, Schinca DC, Scaffardi LB, Moreno P, Méndez C, Roso L, Giovanetti L, Lopez JR (2009) Role of supercontinuum in the fragmentation of colloidal gold nanoparticles in solution. Proc SPIE 7405:74050U-1–74050U-12

    Google Scholar 

  38. Videla FA, Torchia GA, Schinca DC, Scaffardi LB, Moreno P, Mendez C, Giovanetti L, Ramallo López J, Roso L (2010) Analysis of the main optical mechanisms responsible for fragmentation of gold nanoparticles by femtosecond laser radiation. J Appl Phys 107:114308-1–114308-8

    ADS  Google Scholar 

  39. Santillán JMJ, Scaffardi LB, Schinca DC, Videla FA (2010) Determination of nanometric Ag2O film thickness by surface plasmon resonance and optical waveguide mode coupling techniques. J Opt 12:045002–045010

    ADS  Google Scholar 

  40. Videla FA, Torchia GA, Schinca DC, Scaffardi LB, Moreno P, Méndez C, Giovanetti LJ, RamalloLopez JM, Roso L (2010) Analysis of the main optical mechanisms responsible for fragmentation of gold nanoparticles by femtosecond laser radiation. Virtual J Sci Technol Ultrafast Sci Sect Photonics 9(7)

    Google Scholar 

  41. Santillán JMJ, Scaffardi LB, Schinca DC (2011) Quantitative optical extinction-based parametric method for sizing a single core–shell Ag–Ag2O nanoparticle. J Phys D: Appl Phys 44:105104–105112

    ADS  Google Scholar 

  42. Abraham Ekeroth RM, Lester M, Scaffardi LB, Schinca DC (2011) Metallic nanotubes characterization via surface plasmon excitation. Plasmonics 6(3):435–444

    Google Scholar 

  43. Coronado E, Schatz G (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 7:3926–3934

    ADS  Google Scholar 

  44. Kottmann JP, Martin OJF (2001) Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires. Appl Phys B 73:299–304

    ADS  Google Scholar 

  45. Ranjan M, Oates TW, Facsko S, Mller W (2010) Optical properties of silver nanowire arrays with 35 nm periodicity. Opt Lett 35:2576–2578

    Google Scholar 

  46. Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 3:677–732

    ADS  Google Scholar 

  47. Bonacic-Koutecky V, Piercarlo Fantucci J, Koutecky J (1991) Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chem Rev 91:1035–1108

    Google Scholar 

  48. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  49. Lorentz HA (1905) The motion of electrons in metallic bodies. Proc R Acad Sci Amst 7:438, 585, 684

    Google Scholar 

  50. (a) Drude P (1900) The theory of metals ions. Phys Zeitsch 1:161; (b) Drude P (1900) Zur elektronentheori der metalles 1 Teil. Ann Phys (Leipzig) 1:566

    Google Scholar 

  51. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  52. Kraus WA, Schatz GC (1983) Plasmon resonance broadening in small metal particles. J Chem Phys 79:6130–6139

    ADS  Google Scholar 

  53. Kraus WA, Schatz GC (1983) Plasmon resonance broadening in spheroidal metal particles. J Chem Phys 99:353–357

    Google Scholar 

  54. Doyle WT (1958) Absorption of light by colloids in alkali halide crystals. Phys Rev 111:1097–1077

    ADS  Google Scholar 

  55. (a) Genzel L, Martin TP, Kreibig U (1975) Dielectric function and plasma resonances of small metal particles, Z Physik B 21:339. http://www.springerlink.com/content/j2885x1521060275/; (b) Ruppin R, Yatom H (1976) Size and Shape Effects on the Broadening of the Plasma Resonance Absorption in Metals, Phys Status Solid B 74:647; (c) Wood DM, Ashcroft NW (1982) Quantum size effects in the optical propertiesof small metallic particles, Phys Rev B 25:6255; (d) Apell P, Penn DR (1983) Optical Properties of Small Metal Spheres:surface Effects, Phys Rev Lett 50:1316–1319

    Google Scholar 

  56. Granqvist CG, Hunderi O (1977) Optical properties of ultra fine gold particles. Phys Rev B 16:3513–3534

    ADS  Google Scholar 

  57. Palik ED (1985) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  58. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379

    ADS  Google Scholar 

  59. Pinchuk A, von Plessen G, Kreibig U (2004) Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J Phys D: Appl Phys 37:3133–3139

    ADS  Google Scholar 

  60. Rosei R, Antonangeli F, Grassano UM (1973) d bands position and width in gold from very low temperature thermomodulation measurements. Surf Sci 37:689–699

    ADS  Google Scholar 

  61. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Google Scholar 

  62. Maier S (2006) Plasmonic: metal nanoetructures for subwavelength photonic devices. IEEE J Sel Top Quantum Electron 12:1214–1220

    Google Scholar 

  63. Kreibig U (1970) Kramers kronig analysis of the optical properties of small silver particles. Z Phys 234:307–318

    ADS  Google Scholar 

  64. Kreibig U, Fragstein CV (1969) The limitation of electron mean free path in small silver particles. Z Phys 224:307–323

    ADS  Google Scholar 

  65. Rosei R (1974) Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory. Phys Rev B 10:474–483

    ADS  Google Scholar 

  66. Inouye H, Tanaka K, Tanahashi I, Hirao K (1998) Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticles system. Phys Rev B 57:11334–11340

    ADS  Google Scholar 

  67. Cain W, Shalaev V (2010) Optical metamaterials: fundamental and applications. Springer, Heidelberg

    Google Scholar 

  68. Santillán JMJ, Videla FA, Scaffardi LB, Schinca DC (2012) Plasmon spectroscopy for subnanometric copper particles: dielectric function and core-shell sizing. Plasmonics 1–8, doi:10.1007/s11468-012-9395-8

    Google Scholar 

  69. Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL (1997) Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101:3713–3719

    Google Scholar 

  70. Boyen H-G, Kästle G, Weigl F, Koslowski B et al (2002) Oxidation-resistant gold-55 clusters. Science 30:1533–1536

    ADS  Google Scholar 

  71. van de Hulst HC (1981) Light scattering by small particles. Dover, New York

    Google Scholar 

  72. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  73. Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720

    Google Scholar 

  74. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Google Scholar 

  75. Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Google Scholar 

  76. Ishimaru A (1997) Wave propagation and scattering in random media. IEEE Press/Oxford University, New York/Oxford

    MATH  Google Scholar 

  77. Straton JA (1941) Electromagnetic theory. Mc Graw-Hills, New York

    Google Scholar 

  78. Raether H (1988) Surface plasmons on smooth and rough surfaces and on grattings, vol 111, Springer tracts in modern physics. Springer, Berlin

    Google Scholar 

  79. Wokaun AW (1984) Surface enhanced electromagnetic processes. Solid State Phys 38:223–294

    Google Scholar 

  80. Pedersen TG, Jung J, Søndergaard T, Pedersen K Nanopar (2011) Nanoparticle plasmon resonances in the near-static limit. Optics Letters 36(5):713–715

    Google Scholar 

  81. Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by non-spherical dielectric grains. Astrophys J 186:705

    ADS  Google Scholar 

  82. Miller EK (1994) Time domain modelling in electromagnetics. J Electromagn Waves Appl 8:1125–1172

    Google Scholar 

  83. Jerez S, Lara A (2011) A high resolution nonstandard FDTD method for the TM mode of Maxwell’s equations. Math Comput Model 54:1852–1857

    MathSciNet  MATH  Google Scholar 

  84. Hafner C, Ballist R (1983) The multiple multipole method (MMP). Int J Comput Electr Electron Eng 2:1–7

    MATH  Google Scholar 

  85. Pendry JB, MacKinnon A (1992) Calculation of photon dispersion relations. Phys Rev Lett 69:2772–2775

    ADS  Google Scholar 

  86. Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov N (2011) A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J Phys Chem C 115:6317–6323

    Google Scholar 

  87. (a) Jin J (2002) The finite element method in electromagnetics. Wiley, New York. (b) Nieto-Vesperinas M (1991) Scattering and diffraction in physical optics. Wiley, New York (Chaps 1 and 7)

    Google Scholar 

  88. Madrazo A, Nieto-Vesperinas M (1995) Scattering of electromagnetic waves from a cylinder in front of a conducting plane. J Opt Soc Am A 12:1298–1309

    ADS  Google Scholar 

  89. Lester M, Nieto-Vesperinas M (1999) Optical forces on microparticles in an evanescent laser field. Opt Lett 26:936–938

    ADS  Google Scholar 

  90. Lester M, Arias-González JR, Nieto-Vesperinas M (2001) Fundamentals and model of photonic-force microscopy. Opt Lett 26:707–709

    ADS  Google Scholar 

  91. Arias-González de la Aleja JR (2002) Electromagnetic resonances in the light scattering by objects and surfaces. Ph.D. thesis, Universidad Complutense de Madrid, Spain. ISBN: 84-669-1863-9. http://www.ucm.es/BUCM/tesis/fis/ucm-t26131.pdf

  92. Abraham Ekeroth RM, Lester M, Scaffardi LB, Schinca DC (2011) Metallic nanotubes characterization via surface plasmon excitation. Plasmonics 6:435–444

    Google Scholar 

  93. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228

    Google Scholar 

  94. Huang X, Neretina S, El-Sayed MA, Nanorods G (2009) From synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Google Scholar 

  95. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Google Scholar 

  96. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    ADS  Google Scholar 

  97. Oates TWH, Sugime H, Noda S (2009) Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films. J Phys Chem C 113:4820–4828

    Google Scholar 

  98. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Hoboken

    Google Scholar 

  99. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    ADS  Google Scholar 

  100. Emory SR, Nie S (1997) Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal Chem 69:2631–2635

    Google Scholar 

  101. Xu H, Bjerneld EJ, Kall M, Börjesson L (1999) Spectroscopy of single enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    ADS  Google Scholar 

  102. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Google Scholar 

  103. Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70:5177–5183

    Google Scholar 

  104. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97:996–1001

    ADS  Google Scholar 

  105. Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZ-H, Spatz JP, Möller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949–2952

    ADS  Google Scholar 

  106. Specht M, Pedarnig JD, Heckl WM, Hänsch TW (1992) Scanning plasmon near-field microscope. Phys Rev Lett 68:476–479

    ADS  Google Scholar 

  107. Inouye Y, Kawata S (1994) Near-field scanning optical microscope with a metallic probe tip. Opt Lett 19:159–161

    ADS  Google Scholar 

  108. Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys 112:7761–7775

    ADS  Google Scholar 

  109. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136

    ADS  Google Scholar 

  110. Sqalli O, Bernai MP, Hoffmann P, Marquis-Weible F (2000) Improved tip performance for scanning near-field optical microscopy by the attachment of a single gold nanoparticle. Appl Phys Lett 76:2134–2137

    ADS  Google Scholar 

  111. Milner RG, Richards D (2001) The role of tip plasmons in near-field Raman microscopy. J Microsc 202:66–71

    MathSciNet  Google Scholar 

  112. Manjavacas A, García de Abajo FJ (2009) Robust plasmon waveguides in strongly interacting nanowire arrays. Nano Lett 9:1285–1289

    ADS  Google Scholar 

  113. Vogelgesang R, Dorfmüller J, Esteban R, Weitz RT, Dmitriev A, Kern K (2008) Plasmonic nanostructures in apertureless scanning near-field optical microscopy (aSNOM). Phys Status Solid B 245:2255–2260

    ADS  Google Scholar 

  114. Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104:6095–6098

    Google Scholar 

  115. Fang Z, Fan L, Lin C, Zhang D, Meixner AJ, Zhu X (2011) Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11:1676–1680

    ADS  Google Scholar 

  116. Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333

    ADS  Google Scholar 

  117. Krenn JR, Dereux A, Weeber JC, Bourillot E, Lacroute Y, Goudonnet JP (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82:2590–2593

    ADS  Google Scholar 

  118. Bozhevolnyi SI, Erland J, Leosson K, Skovgaard PMW, Hvam JM (2001) Waveguiding in surface plasmon polariton band gap structures. Phys Rev Lett 86:3008–3011

    ADS  Google Scholar 

  119. Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60:9061–9068

    ADS  Google Scholar 

  120. Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84:4721–4724

    ADS  Google Scholar 

  121. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:R16356–R16359

    ADS  Google Scholar 

  122. Krenn JR, Salerno M, Felidj N, Lamprecht B, Schider G, Leitner A, Aussenegg FR, Weeber JC, Dereux A, Goudonnet JP (2001) Light field propagation by metal micro- and nanostructures. J Microscopy 202:122–128

    MathSciNet  Google Scholar 

  123. Lester M, Skigin D (2007) Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays. J Opt A Pure Appl Opt 9:81–87

    ADS  Google Scholar 

  124. Skigin D, Letser M (2011) Optical nanoantennas: from comminications to super-resolution. J Nanophotonics 5:050303, 1–3

    Google Scholar 

  125. Martin-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117

    ADS  Google Scholar 

  126. Lester M, Skigin D (2011) An optical nanoantenna made of plasmonic chain resonators. J Opt 13:035105–0345113

    ADS  Google Scholar 

  127. Barnard ES, Pala RA, Brongersma ML (2011) Photocurrent mapping of near-field optical antenna resonances. Nat Nanotechnol 6:588–593

    ADS  Google Scholar 

  128. Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N, Fuji H, Kikukawa T (2001) Local plasmon photonic transistor. Appl Phys Lett 78:2417–2420

    ADS  Google Scholar 

  129. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Google Scholar 

  130. Santillán JMJ, Scaffardi LB, Schinca DC (2011) Quantitative optical extinction based parametric method for sizing a single core-shell Ag–Ag2O nanoparticle. J Phys D: Appl Phys 44:105104, 1–8

    ADS  Google Scholar 

  131. Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83–90

    ADS  Google Scholar 

  132. Silveirinha MG, Alu A, Engheta N (2008) Cloaking mechanism with antiphase plasmonic satellites. Phys Rev B 78:205109–205118

    ADS  Google Scholar 

  133. Moradi A (2008) Plasmon hybridization in metallic nanotubes. J Phys Chem Solid 69:2936–2838

    ADS  Google Scholar 

  134. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanoestructures: extension from particles pair to nanoshells. Nano Lett 9:2854–2858

    ADS  Google Scholar 

  135. Park T, Nordlander P (2009) On the nature of the bonding and antibonding metallic film and nanoshell plasmons. Chem Phys Lett 472:228–231

    ADS  Google Scholar 

  136. Zhu J (2007) Theoretical study of the tunable second-harmonic generation (SHG) enhancement factor of gold nanotubes. Nanotechnology 18:225702

    ADS  Google Scholar 

  137. Wu D, Xu X, Liu X (2008) Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells. Solid State Commun 146:7–11

    ADS  Google Scholar 

  138. Calculations of cross sections in this section were performed with the integrated method outlined in Section 2, extended to cover the case of cylinders coated. For details of the method see [92]

    Google Scholar 

  139. Encina E, Coronado E (2010) Plasmon coupling in silver nanosphere pairs. J Phys Chem C 114:3918–3923

    Google Scholar 

  140. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104(26):6152–6163

    Google Scholar 

  141. Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337

    Google Scholar 

  142. Mafuné F, Kohno J-y, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J Phys Chem B 106(31):7575–7577

    Google Scholar 

  143. Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    Google Scholar 

  144. Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Google Scholar 

  145. Mafuné F, Kohno J-y, Takeda Y, Kondow T (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561

    Google Scholar 

  146. Mafuné F, Kohno J-y, Takeda Y, Kondow T (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B 105:9050–9056

    Google Scholar 

  147. Mafuné F, Kohno J-y, Takeda Y, Kondow T (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107:4218–4223

    Google Scholar 

  148. Chen Y-H, Tseng Y-H, Yeh C-S (2002) Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticle. J Mater Chem 12:1419–1422

    Google Scholar 

  149. Besner S, Kabashin AV, Meunier M (2006) Fragmentation of colloidal nanoparticles by femtosecond laser-induced supercontinuum generation. Appl Phys Lett 89:233122–233125

    ADS  Google Scholar 

  150. Hahn A, Barcikowski S, Chichkov BN (2008) Influences on nanoparticle. Production during pulsed laser ablation. J Laser Micro/Nanoeng 3(2):73–77

    Google Scholar 

  151. Pyatenko A, Shimokawa K, Yamaguchi M, Nishimura O, Suzuki M (2004) Synthesis of silver nanoparticles by laser ablation in pure water. Appl Phys A 79:803–806

    ADS  Google Scholar 

  152. Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602

    Google Scholar 

  153. Anker JN, Paige Hall W, Lyandres O, Shah N, Zhao J, Van Duyne R (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    ADS  Google Scholar 

  154. Alù A, Young M, Engheta N (2008) Design of nanofilter for optical nanocircuits. Phys Rev B 77:144107–144119

    ADS  Google Scholar 

  155. Cao L, Fan P, Vasudev AP, White JS, Yu Z, Cai W, Schuller JA, Fan S, Brongersma ML (2010) Semiconductor nanowire optical antenna solar absorbers. Nano Lett 10:439–445

    ADS  Google Scholar 

Download references

Acknowledgments

This work was partially financed by Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET (Grants PIP 0394 and PIP 0145), and by Facultad de Ingeniería de Universidad Nacional de La Plata (Grant 11/I151). LBS and ML belong to CONICET, DCS and FAV belong to the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), Argentina, and JMJS and MRA are CONICET fellowship holders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía B. Scaffardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scaffardi, L.B., Schinca, D.C., Lester, M., Videla, F.A., Santillán, J.M.J., Ekeroth, R.M.A. (2013). Size-Dependent Optical Properties of Metallic Nanostructures. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics