Skip to main content

Reconstruction of Functions via Walsh-Fourier Cofficients

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2011 (EUROCAST 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6928))

Included in the following conference series:

  • 2460 Accesses

Abstract

It is of main interest in the theory and also in applications of Fourier series that how to reconstruct a function from the partial sums of its Walsh-Fourier series. In 1955 Fine proved the Fejér-Lebesgue theorem, that is for each integrable function we have the almost everywhere convergence of Fejér means σ n f → f. It is also of prior interest that what can be said - with respect to this reconstruction issue - if we have only a subsequence of the partial sums. In this paper we give a brief résumé of the recent results with respect to this issue above also regarding the class of two-variable integrable functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belinsky, E.S.: On the summability of Fourier series with the method of lacunary arithmetic means. Anal. Math. 10, 275–282 (1984)

    Article  MathSciNet  Google Scholar 

  2. Belinsky, E.S.: Summability of Fourier series with the method of lacunary arithmetical means at the Lebesgue points. Proc. Am. Math. Soc. 125 (12), 3689–3693 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carleson, L.: Appendix to the paper by J.-P. Kahane and Y. Katznelson. Series de Fourier des fonctions bornees, Studies in pure mathematics, pp. 395–413. Birkhauser, Basel-Boston (1983)

    Google Scholar 

  4. Fine, N.J.: Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. U.S.A. 41, 558–591 (1955)

    Article  MATH  Google Scholar 

  5. Gát, G.: Pointwise convergence of the Cesàro means of double Walsh series. Ann. Univ. Sci. Budap. Rolando Eoetvoes, Sect. Comput. 16, 173–184 (1996)

    MATH  Google Scholar 

  6. Gát, G.: On (C,1) summability of integrable functions with respect to the Walsh-Kaczmarz system. Stud. Math. 130 (2), 135–148 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Gát, G.: On the divergence of the (C,1) means of double Walsh-Fourier series. Proc. Am. Math. Soc. 128 (6), 1711–1720 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gát, G.: Divergence of the (C,1) means of d-dimensional Walsh-Fourier series. Anal. Math. 27 (3), 157–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gát, G.: Pointwise convergence of cone-like restricted two-dimensional (C,1) means of trigonometric Fourier series. Journal of Approximation Theory 149 (1), 74–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gát, G.: Almost everywhere convergence of Fejér and logarithmic means of subsequences of partial sums of the Walsh-Fourier series of integrable functions. J. Approx. Theory 162 (4), 687–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gát, G., Nagy, K.: Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh-Fourier series. Acta Mathematica Sinica (English series) 1, 2295–2304 (2010)

    Article  MATH  Google Scholar 

  12. Glukhov, V.A.: Summation of Fourier-Walsh series. Ukr. Math. J. 38, 261–266 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glukhov, V.A.: Summation of multiple Fourier series in multiplicative systems. Math. Notes 39, 364–369 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jia, X., Nixon, M.S.: Analysing front view face profiles for face recognition via the Walsh transform. Pattern Recognit. Lett. 15(6), 551–558 (1994)

    Article  MATH  Google Scholar 

  15. Konyagin, S.V.: The Fourier-Walsh subsequence of partial sums. Math. Notes 54(4), 1026–1030 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ladhawala, N.R., Pankratz, D.C.: Almost everywhere convergence of Walsh Fourier series of H 1- functions. Stud. Math. 59, 37–92 (1976)

    MathSciNet  MATH  Google Scholar 

  17. Marcinkiewicz, J.: Quelques théorèmes sur les séries orthogonales. Ann Soc. Polon. Math. 16, 85–96 (1937)

    Google Scholar 

  18. Móricz, F., Schipp, F., Wade, W.R.: Cesàro summability of double Walsh-Fourier series.. Trans Amer. Math. Soc. 329, 131–140 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Salem, R.: On strong summability of Fourier series. Am. J. Math. 77, 393–403 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schipp, F.: Über gewiessen Maximaloperatoren. Annales Univ. Sci. Budapestiensis, Sectio Math. 18, 189–195 (1975)

    MATH  Google Scholar 

  21. Schipp, F., Wade, W.R., Simon, P.: Walsh series. An introduction to dyadic harmonic analysis. With the assistance from J. Pál (English) Bristol etc.: Adam Hilger (1990)

    Google Scholar 

  22. Simon, F. (C,α) summability of Walsh–Kaczmarz–Fourier series. J. Approximation Theory 127 (1), 39–60 (2000)

    Article  MathSciNet  Google Scholar 

  23. Simon, P.: Cesàro summability with respect to two-parameter Walsh systems.. Monatsh. Math. 131 (4), 321–334 (2001)

    Article  MATH  Google Scholar 

  24. Sloss, B.G., Blyth, W.F.: A Walsh function method for a non-linear Volterra integral equation. J. Franklin Inst. 340(1), 25–41 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weisz, F.: Cesàro summability of two-dimensional Walsh-Fourier series. Trans. Amer. Math. Soc. 348, 2169–2181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weisz, F.: Maximal estimates for the (C,α) means of d-dimensional Walsh-Fourier series. Proc. Am. Math. Soc. 128 (8), 2337–2345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zagorodnij, N.A., Trigub, R.M.: A question of Salem. Theory of functions and mappings. Collect. sci. Works, Kiev (1979)

    Google Scholar 

  28. Zalcwasser, Z.: Sur la sommabilité des séries de Fourier. Stud. Math. 6, 82–88 (1936)

    MATH  Google Scholar 

  29. Zheng, W., Su, W., Ren, F.: Theory and applications of Walsh functions. Shanghai Science-Technic Press, Shanghai (1983)

    MATH  Google Scholar 

  30. Zygmund, A., Marcinkiewicz, J.: On the summability of double Fourier series. Fund. Math. 32, 122–132 (1939)

    MATH  Google Scholar 

  31. Zygmund, A.: Trigonometric series, 2nd edn., vol. I & II. Cambridge University Press, Cambridge (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno-Díaz Franz Pichler Alexis Quesada-Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gát, G. (2012). Reconstruction of Functions via Walsh-Fourier Cofficients. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27579-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27579-1_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27578-4

  • Online ISBN: 978-3-642-27579-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics