Skip to main content

The Different Possibilities for Gait Identification Based on Motion Capture

  • Conference paper
  • 2494 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6928))

Abstract

The domain of biometric motion identification undergoes an extensive research and development. An adaptation of one of the motion identification solutions can be the base for an implementation of a complex identification system. Such a system will always require well defined human skeleton, motion model, comparison algorithms as well as a properly constructed motion database. The results obtained while studying the system, greatly depend on the analysis methods. The main advantage of Motion Capture (MC) systems is the accuracy of recorded data. A Captured motion contains a lot of subtle details as their source is the life person (a human actor).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batyrshin, I.Z., Sheremetov, L.: Perception Based Time Series Data Mining for Decision Making. In: IFSA (2), pp. 209–219 (2007)

    Google Scholar 

  2. Chaczko, Z., Klempous, R.: Anticipatory Biomimetic Middleware. In: 9th International Conference CASYS 2009 on Computing Anticipatory Systems, Lige, Belgium, August 3-8 (2009)

    Google Scholar 

  3. Kulbacki, M., Jablonski, B., Klempous, R., Segen, J.: Learning from Examples and Comparing Models of Human Motion. J. of Advanced Computational Intelligence and Intelligent Informatics 8(5), 477–481 (2004)

    Article  Google Scholar 

  4. Murray, M.P.: Gait as a total pattern of movement. American Journal Phys. Med. 46(1) (1967)

    Google Scholar 

  5. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. Journal of Bone Joint Surg. 46A(2), 335–360 (1996)

    Google Scholar 

  6. Yam, C.Y., Nixon, M.S., Carter, J.N.: Extended Model-Based Automatic Gait Recognition of Walking and Running. In: Proc. of 3rd Int. Conf. on Audio-and Video- Based Biometric Person Authentication, pp. 278–283 (2001)

    Google Scholar 

  7. Yam, C.Y.: Automated person recognition by walking and running via model-based approaches. Pattern Recognition 37(5) (2003)

    Google Scholar 

  8. Cunado, D., Nixon, M.S., Carter, J.N.: Automatic extraction and description of human gait models for recognition purposes. Computer Vision and Image Understanding 90(1), 1–41 (2003)

    Article  Google Scholar 

  9. Mowbray, S.D., Nixon, M.S.: Automatic Gait Recognition via Fourier Descriptors of Deformable Objects. In: Proc. of Audio Visual Biometric Person Authentication (2003)

    Google Scholar 

  10. Cunado, D., Nixon, M.S., Carter, J.N.: Using Gait as a Biometric, via Phase- Weighted Magnitude Spectra. In: Proc. of 1st Int. Conf. on Audio-and Video-Based Biometric Person Authentication, pp. 95–102 (2003)

    Google Scholar 

  11. Kuan, E.L.: Investigating gait as a biometric (Technical report, Department of Electronics and Computer Science. University of Southampton (1995)

    Google Scholar 

  12. Rabiner, L.R., Juang, B.: Fundamentals of speech recognition. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  13. Itakura, F.: Minimum Prediction Residual Principle Applied to Speech Recognition. IEEE Trans. on Acoustics Speech and Signal Processing AS23(1), 67–72 (1975)

    Article  Google Scholar 

  14. Bruderlin, A., Williams, L.: Motion Signal Processing. Computer Graphics 29, 97–104 (1995)

    Google Scholar 

  15. Kulbacki, M., Jablonski, B., Klempous, R., Segen, J.: Multimodel approach to human motion designing. In: Proc. IEEE International Conference on Computational Cybernetics, Siofok (2003)

    Google Scholar 

  16. Kratky, O., Porod, G.: Röntgenuntersuchung gelöster Fadenmoleküle. Rec. Trav. Chim. Pays-Bas. 68, 1106–1123 (1949)

    Article  Google Scholar 

  17. Klempous, R.: Biometric motion identification based on motion capture. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds.) Towards Intelligent Engineering and Information Technology. SCI, vol. 243, pp. 335–348. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Klempous, R.: Movement identification analysis based on Motion Capture. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 629–637. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Moulton, B., Pradhan, G., Chaczko, Z.: Voice operated guidance systems for vision impaired people: investigating a user-centered open source model. International Journal of Digital Content Technology and its Applications (September 12, 2009) (in press, accepted)

    Google Scholar 

  20. Kucharski, T.: Animated Human shape and movement modelling, Masters Thesis, Wroclaw University of Technology (2005) (in polish)

    Google Scholar 

  21. Cheng Changn, I., Lin, S.-Y.: 3D human motion tracking based on a progressive particle filter. Pattern Recognition 43, 3621–3635 (2010)

    Article  MATH  Google Scholar 

  22. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in Neural Information Processing Systems, vol. 16, pp. 329–336 (2003)

    Google Scholar 

  23. Saboune, J., Rose, C., Charpillet, F.: Factored interval particle filtering for gait analysis. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3232–3235 (2007)

    Google Scholar 

  24. Corazza, S., Muendermann, L., Chaudhari, A., Demattio, T., Cobelli, C., Andriacchi, T.: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Annals of Biomedical Engineering 34(6), 1019–1029 (2006)

    Article  Google Scholar 

  25. Muendermann, L., Corazza, S., Andriacchi, T.: The Evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Journal of NeuroEngineering and Rehabilitation 3(1) (2006)

    Google Scholar 

  26. Corazza, S., Mndermann, L., Andriacchi, T.: A Framework For The Functional Identification of Joint Centers Using Markerless Motion Capture, Validation For The Hip Joint. Journal of Biomechanics (2007)

    Google Scholar 

  27. Mndermann, L., Corazza, S., Andriacchi, T.: Accurately Measuring Human Movement using Articulated ICP with Soft-Joint Constraints and a Repository of Articulated Models. In: CVPR (2007)

    Google Scholar 

  28. Shahrokni, A., Lepetit, V., Fua, P.: Bundle Adjustment for Markerless Body Tracking in Monocular Video Sequences. In: ISPRS Workshop on Visualization and Animation of Reality-based 3D Models, Vulpera, Switzerland (2003)

    Google Scholar 

  29. Keogh, E.J., Pazzani, M.J.: Derivative Dynamic Time Warping. In: First SIAM International Conference on Data Mining, Chicago (2001)

    Google Scholar 

  30. Jablonski, B., Klempous, R., Majchrzak, D.: Feasibility analysis of human motion identification using motion capture. In: Proc. of the Int. Conference on Modelling, Identification and Control. Acta Press (2006)

    Google Scholar 

  31. Yers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell System Technical Journal 60(7), 1389–1409 (1981)

    Article  Google Scholar 

  32. www.ibgweb.com/products/reports/bmir-2009-2014

  33. www.btsbioengineering.com/

  34. http://en.wikipedia.org/wiki/ List of motionandgesture file formats

  35. http://www.credo-interactive.com/

  36. http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

  37. http://mocap.cs.cmu.edu/

  38. http://www.mpi-inf.mpg.de/resources/HDM05/

  39. http://www.biovision.com/

  40. http://www.computerhope.com/comp/acclaim.htm

  41. http://www.nih.gov

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno-Díaz Franz Pichler Alexis Quesada-Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klempous, R. (2012). The Different Possibilities for Gait Identification Based on Motion Capture. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27579-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27579-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27578-4

  • Online ISBN: 978-3-642-27579-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics