Skip to main content

Neuro-Fuzzy Applications in Dialysis Systems

  • Chapter
Modeling and Control of Dialysis Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 405))

Abstract

Soft computing techniques are known for their efficiency in dealing with complicated problems when conventional analytical methods are infeasible or too expensive, with only sets of operational data available. Its principal constituents are fuzzy logic, Artificial Neural Network (ANN) and evolutional computing, such as genetic algorithm. Neuro-fuzzy controllers constitute a class of hybrid soft computing techniques that use fuzzy logic and artificial neural networks. The advantages of a combination of ANN and Fuzzy Inference system (FIS) are obvious. There are several approaches to integrate ANN and FIS and very often it depends on the application. This chapter gives an overview of a neuro-fuzzy system design with novel applications in dialysis using an adaptive-network-based fuzzy inference system (ANFIS) for the modeling and predicting important variables in hemodialysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azar, A.T.: Adaptive Neuro Fuzzy system as a novel approach for predicting post-dialysis urea rebound. International Journal of Intelligent Systems Technologies and Applications (IJISTA) 10(3), 302–330 (2011)

    Article  Google Scholar 

  • Azar, A.T., Wahba, K.M.: Artificial Neural Network for Prediction of Equilibrated Dialysis Dose without Intradialytic Sample. Saudi J. Kidney Dis. Transpl. 22(4), 705–711 (2011)

    Google Scholar 

  • Azar, A.T., Balas, V.E., Olariu, T.: Artificial Neural Network for Accurate Prediction of Post-Dialysis Urea Rebound (2010), doi:10.1109/SOFA.2010.5565606

    Google Scholar 

  • Azar, A.T., Kandil, A.H., Wahba, K., Massoud, W.: Neuro-Fuzzy System for Post-dialysis Urea Rebound Prediction. In: Proc. of IEEE 4th Cairo International Biomedical Engineering Conference (CIBEC 2008), Cairo, Egypt, December 18-20 (2008)

    Google Scholar 

  • Azar, A.T.: Adaptive Neuro-Fuzzy System for Hemodialysis Treatment Process, Ph.D. dissertation, Dept. Sys. & Biomed. Eng., Cairo Univ., Egypt (2009)

    Google Scholar 

  • Berenji, R.H.: A reinforcement learning-based architecture for fuzzy logic control. International Journal of Approximate Reasoning 6(2), 267–292 (1992)

    Article  MATH  Google Scholar 

  • Bersini, H., Nordvik, J.P., Bonarini, A.: A simple direct adaptive fuzzy controller derived from its neutral equivalent. In: Proceedings of 2nd IEEE International Conference on Fuzzy Systems, vol. 1, pp. 345–350 (1993)

    Google Scholar 

  • Bhaskaran, S., Tobe, S., Saiphoo, C., et al.: Blood urea levels 30 minutes before the end of dialysis are equivalent to equilibrated blood urea. ASAIO J. 43(5), M759–M762 (1997)

    Article  Google Scholar 

  • Brown, M., Harris, C.J.: Neurofuzzy Adaptive Modelling and Control, 1st edn. Prentice Hall, Hemel Hempstead (1995)

    Google Scholar 

  • Buckley, J.J., Eslami, E.: Fuzzy Neural Networks: Capabilities. In: Pedrycz, W. (ed.) Fuzzy Modeling: Paradigms and Practice, pp. 167–183. Kluwer, Boston (1996)

    Chapter  Google Scholar 

  • Canaud, B., Bosc, J.Y., Leblanc, M., et al.: A simple and accurate method to determine equilibrated post-dialysis urea concentration. Kidney Int. 51(6), 2000–2005 (1997)

    Article  Google Scholar 

  • Castillo, O., Melin, P.: Soft Computing for Control of Non-Linear Dynamical Systems, 1st edn. Physica-Verlag, Heidelberg (2001)

    Book  MATH  Google Scholar 

  • Chen, C.A., Li, Y.C., Lin, Y.F., et al.: Neuro-fuzzy technology as a predictor of parathyroid hormone level in hemodialysis patients. Tohoku J. Exp. Med. 211(1), 81–87 (2007)

    Article  Google Scholar 

  • Cho, K., Wang, B.: Radial basis function based adaptive fuzzy systems and their application to system identification and prediction. Fuzzy Sets and Systems 83(3), 325–339 (1996)

    Article  MathSciNet  Google Scholar 

  • Cox, E.: The Fuzzy Systems Handbook. AP Professional - New York (1994)

    Google Scholar 

  • Daugirdas, J.T.: Second generation logarithmic estimates of single-pool variable volume Kt/V: An analysis of error. J. Am. Soc. Nephrol. 4(5), 1205–1213 (1993)

    Google Scholar 

  • Daugirdas, J.T., Burke, M.S., Balter, P., et al.: Screening for extreme postdialysis urea rebound using the Smye method: patients with access recirculation identified when a slow flow method is not used to draw the postdialysis blood. Am. J. Kidney Dis. 28(5), 727–731 (1996)

    Article  Google Scholar 

  • Daugirdas, J.T., Schneditz, D.: Overestimation of hemodialysis dose depends on dialysis efficiency by regional blood flow but not by conventional two pool urea kinetic analysis. ASAIO J. 41(3), M719–M724 (1995)

    Article  Google Scholar 

  • Depner, T.A.: Assessing Adequacy Of Hemodialysis Urea Modeling. Kidney Int. 45(5), 1522–1535 (1994)

    Article  Google Scholar 

  • Depner, T.A.: History of Dialysis Quantitation. Semin Dial. 12(1), S14–S19 (1999)

    Google Scholar 

  • Fuller, R.: Introduction to Neuro-Fuzzy Systems. Advances in Soft Computing Series. Springer, Heildelberg (2000)

    MATH  Google Scholar 

  • Gotch, F.A., Sargent, J.A.: A Mechanistic Analysis of the National Cooperative Dialysis Study. Kidney Int. 28(3), 526–538 (1985)

    Article  Google Scholar 

  • Guh, J., Yang, C., Yang, J., et al.: Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis. Am. J. Kidney Dis. 31(4), 638–646 (1998)

    Article  Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foudation, 2nd edn. Prentice-Hall, Upper Saddle River (1998)

    Google Scholar 

  • Ichihashi, H., Turksen, I.: A neuro-fuzzy approach to data analysis of pairwise comparisons. Int. Journal of Approximate Reasoning 9(3), 227–248 (1993)

    Article  MathSciNet  Google Scholar 

  • Jang, J.S.R., Sun, C.T.: Functional Equivalence Between Radial Basis Function Networks and Fuzzy Inference Systems. IEEE Trans. on Neural Networks 4(1), 156–159 (1993)

    Article  Google Scholar 

  • Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23(3), 665–685 (1993)

    Article  Google Scholar 

  • Jang, J.S.R., Sun, C.T.: Neuro-Fuzzy Modeling and Control. Proceedings of the IEEE 83, 378–406 (1995)

    Article  Google Scholar 

  • Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and soft computin. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  • Jin, Y., Von Seelen, W., Sendhoff, B.: On Generating FC Fuzzy Rule Systems from Data Using Evolution Strategies. IEEE Trans. on Systems, Man and Cybernetics - Part B: Cybernetics 29(6), 829–845 (1999)

    Article  Google Scholar 

  • Levey, A.S., Bosch, J.P., Lewis, J.B., et al.: A more Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A new Prediction Equation. Ann. Intern. Med. 130(6), 461–470 (1999)

    Article  Google Scholar 

  • Lin, C.T., Lee, C.S.: Neural-Network-Based Fuzzy Logic Control and Decision Systems. IEEE Trans. on Computers 40(12), 1320–1336 (1991)

    Article  MathSciNet  Google Scholar 

  • Lin, C.T., Lee, G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  • Maduell, F., Garcia-Valdecasas, J., Garcia, H., et al.: Validation of different methods to calculate Kt/V considering post-dialysis rebound. Nephrol Dial. Transplant. 12(9), 1928–1933 (1997)

    Article  Google Scholar 

  • Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  • Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of Artificial Neural Networks. The MIT Press (1997)

    Google Scholar 

  • Mizutani, E., Jang, J.S.R.: Coactive neural fuzzy modeling. In: Proceedings of IEEE International Conference on Neural Networks, vol. 2, pp. 760–765 (1995)

    Google Scholar 

  • Nauck, D.: A fuzzy perceptron as a generci model for neuro-fuzzy approaches. In: Proceedings of Fuzzy-Systems 1994, 2nd GI-Workshop (1994)

    Google Scholar 

  • Nauck, D., Kruse, R.: A Neuro-Fuzzy Approach to Obtain Interpretable Fuzzy Systems for Function Approximation. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Anchorage, AK, pp. 1106–1111 (1998a)

    Google Scholar 

  • Nauck, D., Kruse, R.: How the Learning of Rule Weights Affects the Interpretability of Fuzzy Systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Anchorage, AK, vol. 2, pp. 1235–1240 (1998b)

    Google Scholar 

  • Nauck, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets and Syst. 101(2), 261–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Nomura, H., Hayashi, I., Wakami, N.: A self-tuning method of fuzzy control by descent method. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 203–210 (1992)

    Google Scholar 

  • Royas, I., Pomares, H., Ortega, J., Prieto, A.: Self-Organized Fuzzy System Generation from Training Examples. IEEE Trans. on Fuzzy Systems 8(1), 23–36 (2000)

    Article  Google Scholar 

  • Ruspini, E., Bonissone, P., Pedrycz, W.: Handbook of Fuzzy Computation. Ed. Iop Pub/Inst of Physics (1998)

    Google Scholar 

  • Schneditz, D., Daugirdas, J.T.: Compartment effects in hemodialysis. Semin Dial. 14(4), 271–277 (2001)

    Article  Google Scholar 

  • Seng, T.L., Khalib, M.B., Yusof, R.: Tuning of a Neuro-Fuzzy Controller by Genetic Algorithm. IEEE Trans. on Systems, Man and Cybernetics-Part B, Cybernetics 29(2), 226–236 (1999)

    Article  Google Scholar 

  • Shi, Y., Mizumoto, M.: A new approach of neurofuzzy learning algorithm for tuning fuzzy rules. Fuzzy Sets and Systems 112(1), 99–116 (2000a)

    Article  MathSciNet  Google Scholar 

  • Shi, Y., Mizumoto, M.: Some considerations on conventional neuro-fuzzy learning algorithms by gradient descent method. Fuzzy Sets and Systems 112(1), 51–63 (2000b)

    Article  MathSciNet  Google Scholar 

  • Smye, S.W., Dunderdale, E., Brownridge, G., Will, E.: Estimation of treatment dose in high-efficiency hemodialysis. Nephron 67(1), 24–29 (1994)

    Article  Google Scholar 

  • Song, Q., Kasabov, N.K.: NFI: a neuro-fuzzy inference method for transductive reasoning. IEEE Transactions on Fuzzy Systems 13(6), 799–808 (2005)

    Article  Google Scholar 

  • Song, Q., Kasabov, N.: TWNFI—a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling. Neural Networks 19(10), 1591–1596 (2006)

    Article  MATH  Google Scholar 

  • Takagi, H., Hayashi, I.: NN-driven fuzzy reasoning. International Journal of Approximate Reasoning 5(3), 191–212 (1991)

    Article  MATH  Google Scholar 

  • Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  • Tattersall, J.E., DeTakats, D., Chamney, P., et al.: The post-hemodialysis rebound: Predicting and quantifying its effect on Kt/V. Kidney Int. 50(6), 2094–2102 (1996)

    Article  Google Scholar 

  • Tsukamoto, Y.: An approach to fuzzy reasoning method. In: Gupta, M.M., Ragade, R.K. (eds.) Advances in Fuzzy Set Theory and Applications. Elsevier, North-Holland (1979)

    Google Scholar 

  • Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  • Wang, L., Mendel, J.: Back-propagation fuzzy system as nonlinear dynamic system identifiers. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1409–1416 (1992)

    Google Scholar 

  • Yager, R., Filev, D.: Generation of fuzzy rules by mountain clustering. Journal of Intelligent Fuzzy Systems 2(3), 209–219 (1994)

    Google Scholar 

  • Yashiro, M., Watanabe, H., Muso, E.: Simulation of post-dialysis urea rebound using regional flow model. Clin. Exp. Nephrol 8(2), 139–145 (2004)

    Article  Google Scholar 

  • Yen, J., Wang, L.: Simplifying Fuzzy Rule-Based Models Using Orthogonal Transformation Methods. IEEE Trans. on Systems, Man and Cybernetics-Part B: Cybernetics 29(1), 13–24 (1999)

    Article  Google Scholar 

  • Zadeh, L.: Fuzzy sets. Inf. Cont. 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azar, A.T. (2013). Neuro-Fuzzy Applications in Dialysis Systems. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics