Skip to main content

The Research Progress of Bioinformatics-Led Design of Single-Chain Antibody Molecules

  • Chapter
Information Technology and Agricultural Engineering

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 134))

  • 182 Accesses

Abstract

The development of single-chain antibody (scFv) by recombinant gene expression is an important milestone for cancer gene therapy. Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good penetration into tumor tissue and to improve their pharmacokinetics in vivo, offering a clinically valuable application. However, there may be some variation between the structure and function of the fusion proteins. Analyzing the interaction region between the antibody and the antigen, and the binding sites for molecular conformation, it is clear that the existing antibodies need to be modified, enhancing the biological activity of the antibodies. Based on the view that bio-molecular computer models are closely integrated with biological experiments, a bio-molecular structure–activity relationship model can be established in terms of molecular conformation, physical and chemical properties and the biological activity of single-chain antibodies. On the one hand, the structure–activity relationship is clear for new immune molecules at the gene expression level. On the other hand, a single-chain antibody molecule can be designed and optimized for the cancer-oriented treatment. In this review, we provide the theoretical and experimental basis for the development of single-chain antibodies appropriate for cancer therapy.

This work is partially supported by the science and technology plan projects of development and support of Zhengzhou city (No. 0910SGYS33377-1) and the natural sciences plan projects of education department of Henan province (No. 2010A310018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donaldson, J.M., Kari, C., Fragoso, R.C., Rodeck, U., Williams, J.C.: Design and development of masked therapeutic antibodies to limit off-target effects: Application to anti-EGFR antibodies. Cancer Biol. Ther. 8(22), 2145–2150 (2009)

    Google Scholar 

  2. Ohshima, M., Tadakuma, T., Hayashi, H., Inoue, K., Itoh, K.: Generation of a recombinant single-chain variable fragment (scFv) targeting 5-methyl-2’-deoxcytidine. J. Biochem. 147(1), 135–141 (2010)

    Article  Google Scholar 

  3. Muller, D., Karle, A., Meissburger, B., Höfig, I., Stork, R., Kontermann, R.E.: Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J. Biol. Chem. 282(17), 12650–12660 (2007)

    Article  Google Scholar 

  4. Stone, E., Hirama, T., Tanha, J., Tong-Sevinc, H., Li, S., MacKenzie, C.R., Zhang, J.: The assembly of single domain antibodies into bispecific decavalent molecules. J. Immunol. Methods 318(1-2), 88–94 (2007)

    Article  Google Scholar 

  5. Guo, J.Q., Li, Q.M., Zhou, J.Y., Zhang, G.P., Yang, Y.Y., Xing, G.X., Zhao, D., You, S.Y., Zhang, C.Y.: Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system. Protein Expr. Purif. 45(1), 168–174 (2006)

    Article  Google Scholar 

  6. Cao, Y., Marks, J.D., Marks, J.W., Cheung, L.H., Kim, S., Rosenblum, M.G.: Construction and characterization of novel, recombinant immunotoxins targeting the Her2/neu oncogene product: in vitro and in vivo studies. Cancer Res. 69(23), 8987–8995 (2009)

    Article  Google Scholar 

  7. Kamphausen, S., Holtge, N., Wirsching, F., Morys-Wortmann, C., Riester, D., Goetz, R., Thürk, M., Schwienhorst, A.: Genetic algorithm for the design of molecules with desired properties. J. Comput. Aided Mol. Des. 16(8-9), 551–567 (2002)

    Article  Google Scholar 

  8. Hajduk, P.J., Huth, J.R., Tse, C.: Predicting protein druggability. Drug Discov. Today 10(23-24), 1675–1682 (2005)

    Article  Google Scholar 

  9. Jiang, Z., Zhou, Y.: Using bioinformatics for drug target identification from the genome. Am. J. Pharmacogenomics 5(6), 387–396 (2005)

    Article  MathSciNet  Google Scholar 

  10. Wei, L.H., Olafsen, T., Radu, C., Hildebrandt, I.J., McCoy, M.R., Phelps, M.E., Meares, C., Wu, A.M., Czernin, J., Weber, W.A.: Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J. Nucl. Med. 49(11), 1828–1835 (2008)

    Article  Google Scholar 

  11. Zdobnova, T.A., Dorofeev, S.G., Tananaev, P.N., Vasiliev, R.B., Balandin, T.G., Edelweiss, E.F., Stremovskiy, O.A., Balalaeva, I.V., Turchin, I.V., Lebedenko, E.N., Zlomanov, V.P., Deyev, S.M.: Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment. J. Biomed. Opt. 14(2), 021004 (2009)

    Article  Google Scholar 

  12. Loftus, J.C., Yang, Z., Tran, N.L., Kloss, J., Viso, C., Berens, M.E., Lipinski, C.A.: The Pyk2 FERM domain as a target to inhibit glioma migration. Mol. Cancer Ther. 8(6), 1505–1514 (2009)

    Article  Google Scholar 

  13. Nam, C.H., Lobato, M.N., Appert, A., Drynan, L.F., Tanaka, T., Rabbitts, T.H.: An antibody inhibitor of the LMO2-protein complex blocks its normal and tumorigenic functions. Oncogene 27(36), 4962–4968 (2008)

    Article  Google Scholar 

  14. Zhu, H., Yang, B., Yang, X., Wang, L., Xu, J., Liao, C., Feng, Q., Tang, H., Hu, L., Chen, Z., Li, Y.: A novel antibody fragment targeting HAb18G/CD147 with cytotoxicity and decreased immunogenicity. Cancer Biol. Ther. 8(11), 1035–1044 (2009)

    Article  Google Scholar 

  15. Chang, L., Zhou, C., Xu, M., Liu, J.: Interactions between anti-ErbB2 antibody A21 and the ErbB2 extracellular domain provide a basis for improving A21 affinity. J. Comput. Aided Mol. Des. 24(1), 37–47 (2010)

    Article  Google Scholar 

  16. Xu, J., Song, J., Yan, F., Chu, H., Luo, J., Zhao, Y., Cheng, X., Luo, G., Zheng, Q., Wei, J.: Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis. J. Mol. Recognit. 22(4), 293–300 (2009)

    Article  Google Scholar 

  17. Tiwari, A., Khanna, N., Acharya, S.K., Sinha, S.: Humanization of high affinity anti-HBs antibody by using human consensus sequence and modification of selected minimal positional template and packing residues. Vaccine 27(17), 2356–2366 (2009)

    Article  Google Scholar 

  18. Ye, G., Yang, D.H., Tang, S.H., Zhou, M.D., Ding, S.H., Luo, J.L.: Molecular simulation of a single chain Fv against hepatocellular carcinoma. Chinese Journal of Pathophysiology 23(6), 1246–1248 (2007)

    Google Scholar 

  19. Sharma, B.: Structure and mechanism of a transmission blocking vaccine candidate protein Pfs25 from P. falciparum: a molecular modeling and docking study. Silico. Biol. 8(3-4), 193–206 (2008)

    Google Scholar 

  20. Wang, Y., Feng, J., Huang, Y., Gu, X., Sun, Y., Li, Y., Shen, B.: The design, construction and function of a new chimeric anti-CD20 antibody. J. Biotechnol. 129(4), 726–731 (2007)

    Article  Google Scholar 

  21. Geng, S., Feng, J., Li, Y., Kang, X., Sun, Y., Gu, X., Huang, Y., Chang, H., Shen, B.F.: Human IgG1 Cgamma1 domain is crucial for the bioactivity of the engineered anti-CD20 antibodies. Cell Mol. Immunol. 4(2), 121–125 (2007)

    Google Scholar 

  22. Tang, Z.J., Liao, W.J., Yu, B., Zhong, J.X., Zhu, H.F., Yue, Q., Cheng, X., Li, W.H., Shen, G.X.: Modeling of scFv of human antibody against liver cancer. ACTA Biophysica Sinica 21(3), 195–199 (2005)

    Google Scholar 

  23. Yan, L.Y., Chen, J.H., Zhang, X.G.: Research Progress in the Linker of Fusion Protein. Biotechnology 18(3), 92–94 (2008)

    Google Scholar 

  24. Rea, A.M., Thurston, V., Searle, M.S.: Mechanism of ligand-induced folding of a natively unfolded helixless variant of rabbit I-BABP. Biochemistry 48(31), 7556–7564 (2009)

    Article  Google Scholar 

  25. Xi, Y., Yuan, Z., Zhang, H., Guan, H., Kong, F., Liu, N., Liang, F., Cui, J., Guo, S., Sun, Y., Xi, C.: Molecular construction and characterization of a novel exotoxin fusion protein that selectively blocks the B7:CD28 costimulatory signal system. J. Immunother. 29(6), 586–595 (2006)

    Article  Google Scholar 

  26. Xue, F., Gu, Z., Feng, J.A.: Linker: a web server to generate peptide sequences with extended conformation. Nucleic Acids Research 32(web server issue), W562–W565 (2004)

    Article  Google Scholar 

  27. Shibata, K., Maruyama-Takahashi, K., Yamasaki, M., Hirayama, N.: G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers. Biochem. Biophys. Res. Commun. 341(2), 483–488 (2006)

    Article  Google Scholar 

  28. Kim, G.B., Wang, Z., Liu, Y.Y., Stavrou, S., Mathias, A., Goodwin, K.J., Thomas, J.M., Neville, D.M.: A fold-back single-chain diabody format enhances the bioactivity of an anti-monkey CD3 recombinant diphtheria toxin-based immunotoxin. Protein Eng. Des. Sel. 20(9), 425–432 (2007)

    Article  Google Scholar 

  29. Theisen, D.M., Pongratz, C., Wiegmann, K., Rivero, F., Krut, O., Krönke, M.: Targeting of HIV-1 Tat traffic and function by transduction-competent single chain antibodies. Vaccine 24(16), 3127–3136 (2006)

    Article  Google Scholar 

  30. Yang, L.J., Hou, Y.C., Yao, L.B., Su, C.Z.: Analysis of primary structure and modeling of spatial structure of single-chain variable region of antibody against human gastric cancer. World Chinese Journal of Digestology 16(21), 2333–2336 (2008)

    Google Scholar 

  31. Arcangeli, C., Cantale, C., Galeffi, P., Gianese, G., Paparcone, R., Rosato, V.: Understanding structural/functional properties of immunoconjugates for cancer therapy by computational approaches. J. Biomol. Struct. Dyn. 26(1), 35–48 (2008)

    Google Scholar 

  32. Clark, K.R., Walsh, S.T.: Crystal structure of a 3B3 variant–a broadly neutralizing HIV-1 scFv antibody. Protein Sci. 18(12), 2429–2441 (2009)

    Article  Google Scholar 

  33. Koti, M., Farrugia, W., Nagy, E., Ramsland, P.A., Kaushik, A.K.: Construction of single-chain Fv with two possible CDR3H conformations but similar inter-molecular forces that neutralize bovine herpesvirus 1. Mol. Immunol. 47(5), 953–960 (2010)

    Article  Google Scholar 

  34. Shen, Z., Yan, H., Zhang, Y., Mernaugh, R.L., Zeng, X.: Engineering peptide linkers for scFv immunosensors. Anal. Chem. 80(6), 1910–1917 (2008)

    Article  Google Scholar 

  35. Fisher, A.C., DeLisa, M.P.: Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery. J. Mol. Biol. 385(1), 299–311 (2009)

    Article  Google Scholar 

  36. Asano, R., Ikoma, K., Kawaguchi, H., Ishiyama, Y., Nakanishi, T., Umetsu, M., Hayashi, H., Katayose, Y., Unno, M., Kudo, T., Kumagai, I.: Application of the Fc fusion format to generate tag-free bi-specific diabodies. FEBS J. 277(2), 477–487 (2010)

    Article  Google Scholar 

  37. Stork, R., Zettlitz, K.A., Müller, D., Rether, M., Hanisch, F.G., Kontermann, R.E.: N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J. Biol. Chem. 283(12), 7804–7812 (2008)

    Article  Google Scholar 

  38. Gurkan, C., Ellar, D.J.: Expression in Pichia pastoris and purification of a membrane-acting immunotoxin based on a synthetic gene coding for the Bacillus thuringiensis Cyt2Aa1 toxin. Protein Expr. Purif. 29(1), 103–116 (2003)

    Article  Google Scholar 

  39. Olafsen, T., Sirk, S.J., Betting, D.J., Kenanova, V.E., Bauer, K.B., Ladno, W., Raubitschek, A.A., Timmerman, J.M., Wu, A.M.: ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies). Protein Eng. Des. Sel. (2010), doi: 10.1093/protein/gzp081

    Google Scholar 

  40. Schmiedl, A., Zimmermann, J., Scherberich, J.E., Fischer, P., Dübel, S.: Recombinant variants of antibody 138H11 against human gamma-glutamyltransferase for targeting renal cell carcinoma. Hum. Antibodies 15(3), 81–94 (2006)

    Google Scholar 

  41. Szantai-Kis, C., Kovesdi, I., Eros, D., Bánhegyi, P., Ullrich, A., Kéri, G., Orfi, L.: Prediction oriented QSAR modelling of EGFR inhibition. Curr. Med. Chem. 13(3), 277–287 (2006)

    Article  Google Scholar 

  42. Gu, X., Jia, X.L., Feng, J.N., Shen, B., Huang, Y., Geng, S., Sun, Y., Wang, Y., Li, Y., Long, M.: Molecular Modeling and Affinity Determination of scFv Antibody: Proper Linker Peptide Enhances Its Activity. Annals of Biomedical Engineering (2009), doi: 10. 1007/s10439-009-9810-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yong Shan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Shan, GY., Zhang, JH. (2012). The Research Progress of Bioinformatics-Led Design of Single-Chain Antibody Molecules. In: Zhu, E., Sambath, S. (eds) Information Technology and Agricultural Engineering. Advances in Intelligent and Soft Computing, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27537-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27537-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27536-4

  • Online ISBN: 978-3-642-27537-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics