Skip to main content

Model Regularization in Coevolutionary Architectures Evolving Straight Line Code

  • Conference paper

Part of the book series: Studies in Computational Intelligence ((SCI,volume 399))

Abstract

Frequently, when an evolutionary algorithm is applied to a population of symbolic expressions, the shapes of these symbolic expressions are very different at the first generations whereas they become more similar during the evolving process. In fact, when the evolutionary algorithm finishes most of the best symbolic expressions only differ in some of its coefficients. In this paper we present several coevolutionary strategies of a genetic program that evolves symbolic expressions represented by straight line programs and an evolution strategy that searches for good coefficients. The presented methods have been applied to solve instances of symbolic regression problem, corrupted by additive noise. A main contribution of the work is the introduction of a fitness function with a penalty term, besides the well known fitness function based on the empirical error over the sample set. The results show that in the presence of noise, the coevolutionary architecture with penalized fitness function outperforms the strategies where only the empirical error is considered in order to evaluate the symbolic expressions of the population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maynard, J.: Evolution and the theory of games. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  2. Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)

    MATH  Google Scholar 

  3. Hillis, D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Artificial Life II, SFI Studies in the Sciences Complexity 10, 313–324 (1991)

    Google Scholar 

  4. Rosin, C., Belew, R.: New methods for competetive coevolution. Evolutionary Computation 5(1), 1–29 (1996)

    Article  Google Scholar 

  5. Wiegand, R.P., Liles, W.C., De Jong, K.A.: An Empirical Analysis of Collaboration Methods in Cooperative Coevolutionary Algorithms. In: Proceedings of the 2001 Conference on Genetic and Evolutionary Computation (GECCO), pp. 1235–1242 (2001)

    Google Scholar 

  6. Casillas, J., Cordón, O., Herrera, F., Merelo, J.: Cooperative coevolution for learning fuzzy rule-based systems. In: Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 361–368 (2006)

    Google Scholar 

  7. Vanneschi, L., Mauri, G., Valsecchi, A., Cagnoni, S.: Heterogeneous Cooperative Coevolution: Strategies of Integration between GP and GA. In: Proc. of the Fifth Conference on Artificial Evolution (AE 2001), pp. 311–322 (2001)

    Google Scholar 

  8. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: Proceedings of the 2001 Conference on Genetic and Evolutionary Computation (GECCO), pp. 155–162 (2001)

    Google Scholar 

  9. Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 71–83. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Ryan, C., Keijzer, M.: An Analysis of Diversity of Constants of Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 409–418. Springer, Heidelberg (2003)

    Chapter  MATH  Google Scholar 

  11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  12. Burguisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Springer, Heidelberg (1997)

    Book  Google Scholar 

  13. Berkowitz, S.J.: On computing the determinant in small parallel time using a small number of processors. Information Processing Letters 18, 147–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heintz, J., Roy, M.F., Solerno, P.: Sur la complexite du principe de Tarski-Seidenberg. Bulletin de la Societe Mathematique de France 118, 101–126 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giusti, M., Heintz, J., Morais, J., Morgenstern, J.E., Pardo, L.M.: Straight Line Programs in Geometric Elimination Theory. Journal of Pure and Applied Algebra 124, 121–146 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Alonso, C.L., Montana, J.L., Puente, J.: Straight line programs: a new Linear Genetic Programming Approach. In: Proc. 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 517–524 (2008)

    Google Scholar 

  17. Vapnik, V.: Statistical Learning Theory. John Willey and Sons (1998)

    Google Scholar 

  18. Montaña, J.L., Alonso, C.L., Borges, C.E., Crespo, C.L.: Adaptation, Performance and Vapnik-Chervonenkis Dimension of Straight Line Programs. In: Proc. 12th European Conference on Genetic Programming, pp. 315–326 (2009)

    Google Scholar 

  19. Alonso, C.L., Montaña, J.L., Borges, C.E.: Model Complexity Control in Straight Line Program Genetic Programming. Technical Report (2011)

    Google Scholar 

  20. Cherkassky, V., Yunkian, M.: Comparison of Model Selection for Regression. Neural Computation 15(7), 1691–1714 (2003)

    Article  MATH  Google Scholar 

  21. Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley and Sons, New-York (1981)

    MATH  Google Scholar 

  22. Michalewicz, Z., Logan, T., Swaminathan, S.: Evolutionary operators for continuous convex parameter spaces. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming, pp. 84–97 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César L. Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Alonso, C.L., Montaña, J.L., Borges, C.E., de la Cruz Echeandía, M., de la Puente, A.O. (2012). Model Regularization in Coevolutionary Architectures Evolving Straight Line Code. In: Madani, K., Dourado Correia, A., Rosa, A., Filipe, J. (eds) Computational Intelligence. IJCCI 2010. Studies in Computational Intelligence, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27534-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27534-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27533-3

  • Online ISBN: 978-3-642-27534-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics