Skip to main content

Theoretical Background

  • Chapter
  • First Online:
Landslide Analysis and Early Warning Systems

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A very basic but widely accepted and used definition for landslide was established by Cruden (1991) and Cruden and Varnes (1996) and defines a landslide as “the movement of a mass of rock, debris or earth down a slope”. However, the term can be confusing if the parts of the word are considered. Cruden and Varnes (1996) note that it describes all kinds of mass movements and is not limited to granular soil (as land might suggest) or a sliding movement process. The term landslide is well established in the research community and will therefore also be used in this thesis as an overarching term referring to all movement types and material properties. Further on, the term mass movement is used interchangeably with landslide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rock falls by means of terrestrial laser scanner monitoring. Geomorphology 119(3–4):162–171

    Article  Google Scholar 

  • Abramson LW (2002) Slope stability and stabilization methods. Wiley, New York

    Google Scholar 

  • Ahnert F (2003) Einführung in die Geomorphologie. Ulmer, Stuttgart

    Google Scholar 

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265

    Article  Google Scholar 

  • Alexander DE (2000) Confronting catastrophe: new perspectives on natural disasters. Oxford University Press, Oxford

    Google Scholar 

  • Alexander D (2002) Principles of emergency planning and management, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Amitrano D, Gaffet S, Malet J.-P, Maquaire O (2007) Understanding mudslides through micro-seismic monitoring: the Super-Sauze (South French Alps) case study. Bulletin de la Société Géologique de France 178(2):149–157. Accessed 15 Oct 2010

    Google Scholar 

  • Anderson MG, Richards K (1987) Modelling slope stability: the complementary nature of geotechnical and geomorphological approaches. In: Anderson MG (ed) Slope stability: geotechnical engineering and geomorphology. Wiley, New York, pp 1–9

    Google Scholar 

  • Anderson SA, Thallapally LK (1996) Hydrologic response of a steep tropical slope to heavy rainfall. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1489–1495

    Google Scholar 

  • Anderson MG, Lloyd DM, Park A, Hartshorne J, Hargraves S, Othman A (1996) Establishing new design dynamic modelling criteria for tropical cut slopes. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1067–1072

    Google Scholar 

  • Anderson H, Bengtsson P-E, Berglund C, Larsson C, Larsson R, Sällfors G, Öberg-Högsta A-L (2000) The landslide at Vagnharad in Sweden. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 65–70

    Google Scholar 

  • Anderson M, Holcombe L, Flory R, Renaud J-P (2008) Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean. Nat Hazards 47(3):297–315

    Article  Google Scholar 

  • Angeli M-G, Gasparetto P, Bromhead E (2004) Strength-regain mechanisms in intermittently moving slides. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 689–696

    Google Scholar 

  • Angerer H, Hermann SW, Kittl H, Poisel R, Roth W (2004) Monitoring, mechanics and risk assessrnent of the landslide Lärchberg Galgenwald (Austria). In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 821–826

    Google Scholar 

  • Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1(1):21–28

    Article  Google Scholar 

  • Apip K, Takara K, Yamashina S, Ibrahim AB (2009) Study on early warning systems for shallow landslide in the upper Citarum River catchment, Indonesia. In: Annuals of disaster prevention research institute, Kyoto University, Japan (52B), pp 9–17

    Google Scholar 

  • Apip K, Takara K, Yamashiki Y, Sassa K, Ibrahim AB, Fukuoka H (2010) A distributed hydrological–geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides 7(3):237–258

    Article  Google Scholar 

  • Arattano M (1999) On the use of seismic detectors as monitoring and warning systems for debris flows. Nat Hazards 20(2):197–213

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2:3–14

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazards Earth Syst Sci 7:637–650

    Article  Google Scholar 

  • Ashland FX (2003) Characteristics, causes, and implications of the 1998 Wasatch Front landslides. Utah Geological Survey Special Study, Utah, p 105

    Google Scholar 

  • Atkinson P, Jiskoot H, Massari R, Murray T (1998) Generalized linear modelling in geomorphology. Earth Surf Proc Land 23(13):1185–1195

    Article  Google Scholar 

  • Ausilio E, Cairo R, Dente G (2004) Role of viscous soil properties on landslide movement triggered by pore water fluctuations. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1195–1200

    Google Scholar 

  • Australian Geomechanics Society (2002) Landslide risk management concepts and guidelines. Australian Geomechanics Society sub-committee on landslide risk management, pp 51–70

    Google Scholar 

  • Avian M, Kellerer-Pirklbauer A, Bauer A (2009) LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Hazards Earth Syst Sci 9:1087–1094

    Article  Google Scholar 

  • Avila-Olivera JA, Garduño-Monroy VH (2008) A GPR study of subsidence-creep-fault processes in Morelia, Michoacán, Mexico. Eng Geol 100(1–2):69–81

    Article  Google Scholar 

  • Avolio MV, Di Gregorio S, Mantovani F, Pasuto A, Rongo R, Silvano S, Spataro W (2000) Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios. Int J Appl Earth Observ Geoinform 2(1):41–50

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1(1):73–81

    Article  Google Scholar 

  • Aysen A (2002) Soil mechanics: basic concepts and engineering applications. Taylor & Francis, Vancouver

    Google Scholar 

  • Badoux A, Graf C, Rhyner J, Kuntner R, McArdell BW (2009) A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Nat Hazards 49(3):517–539

    Article  Google Scholar 

  • Baek Y, Koo H, Bae GJ (2004) Study on development monitoring system of slope using the optical fibre sensor. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 755–758

    Google Scholar 

  • Bai Y, Huang R, Ju N, Zhao J, Huo Y (2008) 3DEC stability analysis of high and steep rock slope. J Eng Geol 16(5):592–597

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38(1):364. Accessed 2 Nov 2010

    Google Scholar 

  • Baldo M, Bicocchi C, Chiocchini U, Giordan D, Lollino G (2009) LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy. Geomorphology 105(3–4):193–201

    Article  Google Scholar 

  • Bandis S, Colombini V, Delmonaco G, Margottini C (2000) New typology of low environmental impact consolidation for rockfall prone cliffs through interventions from the underground. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, p 107

    Google Scholar 

  • Barendse MB, Machan G (2009) In-place microelectromechanical system inclinometer strings: evaluation of an evolving technology—Publications index. In: TRB 88th annual meeting compendium of papers DVD. Washington, p 12

    Google Scholar 

  • Barla G, Amici R, Vai L, Vanni A (2004) Investigation, monitoring and modelling of a landslide in porphyry in a public safety perspective. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 623–628

    Google Scholar 

  • Barton ME, McCosker M (2000) Inclinometer and tiltmeter monitoring of a high chalk cliff. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 127–132

    Google Scholar 

  • Baum RL (2007) Landslide warning capabilities in the United States—2006. In: Proceedings of the first North America landslide conference. Association of Engineering Geologists Special Publication, Vail Colorado, USA, vol 23, pp 1–14

    Google Scholar 

  • Baum RL, Fleming RW (1991) Use of longitudinal strain in identifying driving and resisting elements of landslides. Geol Soc Amer Bullet 103(8):1121–1132. Accessed 20 Sep 2010

    Google Scholar 

  • Baum RL, Godt JW (2009) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7(3):259–272

    Article  Google Scholar 

  • Baum RL, Coe JA, Godt JW, Harp EL, Reid ME, Savage WZ, Schulz WH, Brien DL, Chleborad AF, McKenna JP, Michael JA (2005a) Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides 2(4):266–279

    Article  Google Scholar 

  • Baum RL, Godt JW, Harp EL, McKenna JP, McMullen SR (2005b) Early warning of landslide for rail traffic between Seattle and Washington. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd, Vancouver, p 731

    Google Scholar 

  • Bell R (2007) Lokale und regionale Gefahren- und Risikoanalyse gravitativer Massenbewegungen an der Schwäbischen Alb. University of Bonn, Germany

    Google Scholar 

  • Bell R, Glade T, Thiebes B, Jäger S, Krummel H, Janik M, Holland R (2009) Modelling and web processing of early warning. In: Malet J-P, Remaître A, Bogaard T (eds) Landslide processes, From geomorphic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 249–252

    Google Scholar 

  • Bell R, Mayer J, Pohl J, Greiving S, Glade T (2010) Integrative Frühwarnsysteme für Gravitative Massenbewegungen (ILEWS)—Monitoring, Modellierung, Implementierung. Klartext, Essen

    Google Scholar 

  • Berardi R, Mercurio G, Bartolini P, Cordano E (2005) Dynamics of saturation phenomena and landslide triggering by rain infiltration in a slope. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 212–219

    Google Scholar 

  • Bichler A, Bobrowsky P, Best M, Douma M, Hunter J, Calvert T, Burns R (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides 1(1):29–40

    Article  Google Scholar 

  • Bjerrum L (1967) Progressive failure in slopes of over consolidated plastic clay and clay shales. J Soil Mech Found Div Amer Soc Civil Eng 93:1–49

    Google Scholar 

  • Blackburn JT, Dowding CH (2004) Finite-element analysis of time domain reflectometry cable-grout-soil interaction. J Geotech Geoenviron Eng 130(3):231–239

    Article  Google Scholar 

  • Bláha P (1996) Geoacoustic method and slope deformations. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1521–1524

    Google Scholar 

  • Blikra LH (2008) The Aknes rockslide; monitoring, threshold values and early-warning. In: Landslides and engineered slopes. From the past to the future proceedings of the tenth international symposium on landslides and engineered slopes. pp 1089–1094

    Google Scholar 

  • Bloyet J, Beghoul N, Ricard Y, Froidevaux C (1989) In situ test of a borehole extensometer. Rock Mech Rock Eng 22(4):289–297. Accessed 11 Oct 2010

    Google Scholar 

  • Bogaard T (2000) The slope movements within the Mondorès graben (Drôme, France); the interaction between geology, hydrology and typology. Eng Geol 55(4):297–312. Accessed 20 Sep 2010

    Google Scholar 

  • Bonnard C (2008) Introduction to Lanslide: mechanisms of landslides and specificities of large landslides. Presentation at laram summer school, Ravello, Italy, 2008

    Google Scholar 

  • Bonnard C, Noverraz F, Dupraz H (1996) Long-term movement of substabilized versants and climatic changes in the Swiss Alps. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1525–1530

    Google Scholar 

  • Bonnard C, Tacher L, Beniston M (2008) Prediction of landslide movements caused by climate change: modelling the behaviour of a mean elevation large slide in the Alps and assessing its uncertainties. In: Proceedings of the tenth international symposium on landslides and engineered slopes (Volume 1)

    Google Scholar 

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109(3–4):132–147

    Article  Google Scholar 

  • Borgatti L, Corsini A, Barbieri M, Sartini G, Truffelli G, Caputo G, Puglisi C (2006) Large reactivated landslides in weak rock masses: a case study from the Northern Apennines (Italy). Landslides 3(2):115–124

    Article  Google Scholar 

  • Bovis MJ (2004) Failure. In: Goudie A (ed) Encyclopedia of geomorphology. Taylor & Francis, Routledge, pp 360–361

    Google Scholar 

  • Bozzano F, Gaeta M, Scarascia GM, Valentini G (2000) Numerical modelling of slopes surrounding ignimbrite plateaux. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, p 177

    Google Scholar 

  • Bozzano F, Mazzanti P, Prestininzi A, Scarascia Mugnozza G (2010) Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides 7(3):381–385

    Article  Google Scholar 

  • Brand EW, Premchitt J, Philipson HB (1984) Relationship between rainfall and landslides in Hong Kong. In: Proceedings of the fourth international symposium on landslides. Toronto, pp 377–384

    Google Scholar 

  • Brandon TL, Wright SG, Duncan JM (2008) Analysis of the stability of I-Walls with Gaps between the I-Wall and the Levee Fill. J Geotech Geoenviron Eng 134(5):692

    Google Scholar 

  • Brennecke M (2006) Erstellung einer Inventarkarte gravitativer Massenbewegungen an der Schwäbischen Alb—Kartierung aus Luftbildern und einem digitalen Höhenmodell. University of Bonn, Germany

    Google Scholar 

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5(6):853–862

    Article  Google Scholar 

  • Bressani LA, Pinheiro RJB, Eisenberger CN, Soares JMD (2008) Movements of a large urban slope in the town of Santa Cruz do Sul (RGS), Brazil. Landslides Eng Slopes. From the Past to the Future 1:293–298

    Article  Google Scholar 

  • Breunig M, Schilberg B, Kupfer PV, Jahn M, Reinhardt W, Nuhn E, Boley C, Trauner F-X, Wiesel J, Richter D, Abecker A, Gallus D, Kazakos W, Bartels A (2009) EGIFF—Developing advanced GI methods for early warning in mass movement scenarios. In: Stroink L (ed) Geotechnologien science report 13. Early warning system in earth management. pp 49–72

    Google Scholar 

  • Bromhead EN (1998) Stability of slopes. Taylor & Francis, Routledge

    Google Scholar 

  • Bromhead E, Huggins M, Ibsen M-L (2000) Shallow landslides in Wadhurst clay at Robertsbridge, Sussex, UK. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 183–188

    Google Scholar 

  • Brooks SM, Crozier MJ, Glade TW, Anderson MG (2004) Towards establishing climatic thresholds for slope instability: use of a physically-based combined soil hydrology-slope stability model. Pure Appl Geophys 161(4):881–905

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458

    Article  Google Scholar 

  • Bull WB (1991) Geomorphic responses to climatic change. Oxford University Press, Oxford

    Google Scholar 

  • Buma J (2000) Finding the most suitable slope stability model for the assessment of the impact of climate change on a landslide in southeast France. Earth Surf Proc Land 25(6):565–582

    Article  Google Scholar 

  • Burghaus S, Bell R, Kuhlmann H (2009) Improvement of a terrestric network for movement analysis of a complex landslide. Presentation at FIG conference, Eilat, Israel, 2009

    Google Scholar 

  • Burns SF, Harden TM, Andrew CJ (eds) (2008) Homeowner’s guide to landslides—Recognition, prevention, control and mitigation. Portland State University, Portland

    Google Scholar 

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler. Series A, Phys Geog 62(1/2):23–27. Accessed 18 Oct 2010

    Google Scholar 

  • Cala M, Flisiak J, Tajdus A (2004) Slopc stability analysis with modified shear strength reduction technique. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1085–1090

    Google Scholar 

  • Calcaterra D, Parise M, Palma B (2003) Combining historical and geological data for the assessment of the landslide hazard: a case study from Campania, Italy. Nat Hazards Earth Syst Sci 3:3–16

    Google Scholar 

  • Calcaterra D, Ramondini M, Calò F, Longobardi V, Parise M, Galzerano CM (2008) DInSAR techniques for monitoring slow moving-landslides. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes. From the Past to the Future Proceedings of the tenth international symposium on landslides and engineered slopes. pp 1089–1094

    Google Scholar 

  • California Geological Survey (2003) Hazards from “Mudslides”…Debris Avalanches and Debris flows in Hillslide and Wildfire Areas. U.S. Geological Survey Open File Report 2006-1064

    Google Scholar 

  • Calvello M, Cascini L, Sorbino G (2008) A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces. Int J Numer Anal Meth Geomech 32(4):327–351

    Article  Google Scholar 

  • Campbell RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, Southern California. US Geological Survey Professional Paper 851

    Google Scholar 

  • Cannon SH, Ellen SD (1988) Rainfall that resulted in abundant debris flow activity during the storm. In: Ellen SD, Wieczorek GF (eds) Landslides, floods, and marine effects of the storm of January 3–5, 1982. US Geological Survey Professional Paper, San Francisco Bay region, California, pp 27–33

    Google Scholar 

  • Canuti P, Casagali N, Moretti S, Leva D, Sieber AJ, Tarchi D (2002) Landslide monitoring by using ground-based radar differential interferometry. In: Rybár J, Stemberk J, Wagner P (eds) First European conference on landslides. Balkema Publishers, Czech Republic, pp 523–528

    Google Scholar 

  • Capparelli G, Tiranti D (2010) Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides 4(7):401–410

    Article  Google Scholar 

  • Capparelli G, Biondi D, De Luca DL, Versace P (2009) Hydrological and complete models for forecasting landslides triggered by rainfalls. In: Rainfall–induced landslides. Mechanisms monitoring techniques and nowcasting models for early warning systems. Proceedings of the first Italian workshop on landslides. pp 8–10

    Google Scholar 

  • Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2(1/2):57–72

    Article  Google Scholar 

  • Carey JM, Moore R, Petley DN, Siddle HJ (2007) Pre-failure behaviour of slope materials and their significance in the progressive failure of landslides. In: McInnes R, Jakeways J, Fairbank H, Mathie E (eds) Landslide and climate change—Challenges and solutions. Taylor & Francis, Routledge, pp 217–226

    Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in accessing landslide hazard risk. ITC J 2:172–183

    Google Scholar 

  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20(2):117–135

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Proc Land 28(10):1125–1142

    Article  Google Scholar 

  • Cartlidge E (2010) Scientists face trial over L’Aquila quake. http://physicsworld.com/cws/article/news/43001. Accessed 13 Sep 2010

  • Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf Proc Land 28(9):925–950

    Article  Google Scholar 

  • Casagali N, Farina P, Leva D, Tarchi D (2004) Landslide monitoring on the Stromboli volcano through SAR interferometry. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 803–808

    Google Scholar 

  • Casagli N, Rinaldi M, Gargini A, Curini A (1999) Pore water pressure and stream bank stability: results from a monitoring site on the Sieve River, Italy. Earth Surf Proc Land 24(12):1095–1114

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M (2008) The role played by mountain tracks on rainfall-induced shallow landslides: a case study. In: Proceedings of the iEMSs fourth biennial meeting: International congress on environmental modelling and software (iEMSs 2008). 7–10 July 2008, Barcelona, Spain, pp 1484–1491

    Google Scholar 

  • Cássia de Brito Galvão T, Parizzi MG, Sobreira FG, Elmiro T, Beirigo EA (2007) Landslide in Belo Horizonte, Brazil

    Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2(4):329–342

    Article  Google Scholar 

  • Chan RKS (2007) Challenges in slope engineering in Hong Kong. In: Proceedings of the sixteenth southeast Asian geotechnical conference, Southeast Asian Geotechnical Society, Malaysia. pp 137–151

    Google Scholar 

  • Chan RKS, Pang PLR, Pun WK (2003) Recent developments in the landslip warning system in Hong Kong. In: Proceedings of the fourteenth Southeast Asian geotechnical conference, Southeast Asian Geotechnical Society, Hong Kong, pp 219–224

    Google Scholar 

  • Chandler RJ (1991): Slope stability engineering: developments and applications? In: Proceedings of the international conference on slope stability. Thomas Telford, London

    Google Scholar 

  • Chang K-T, Wan S, Lei T-C (2010) Development of a spatial decision-support system for monitoring earthquake-induced landslides based on aerial photographs and the finite element method. Int J Appl Earth Observ Geoinform 12(6):448–456. Accessed 27 Oct 2010

    Google Scholar 

  • Chen SG, Cai JG, Zhao J, Zhou YX (2000) Discrete element modelling of an underground explosion in a jointed rock mass. Geotech Geol Eng 18(2):59–78

    Article  Google Scholar 

  • Cheng YM, Lau CK (2008) Slope stability analysis and stabilization: new methods and insight. Taylor & Francis, Routledge

    Google Scholar 

  • Cheng DX, Pan W, Liu DA, Feng SR, Guo HF, Ding EB (2006) 3 DEC modeling of equivalent mechanical parameters in anchored jointed rock mass. Yantu Lixue (Rock and Soil Mechanics) 27(12):2127–2132

    Google Scholar 

  • Cheung PY, Wong MC, Yeung HY (2006) Application of rainstorm nowcast to real-time warning of landslide hazards in Hong Kong. In: WMO PWS workshop on warnings of real-time hazards by using nowcasting technology. pp 9–13

    Google Scholar 

  • Chiang S, Chang K (2009) Application of radar data to modeling rainfall-induced landslides. Geomorphology 103(3):299–309

    Article  Google Scholar 

  • Chiba M (2009) Warning and evacuation in response to sediment-related disasters. Nat Hazards 2(56):499–507

    Google Scholar 

  • Chigira M, Duan F, Yagi H, Furuya T (2004) Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides 1(3):203–209

    Article  Google Scholar 

  • Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 3–4(118):225–238

    Article  Google Scholar 

  • Ching-Chuan H, Yih-Jang J, Lih-Kang H, Jin-Long L (2009) Internal soil moisture and piezometric responses to rainfall-induced shallow slope failures. J Hydrol 370(1–4):39–51

    Article  Google Scholar 

  • Chleborad AF (2000) Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle, Washington. U.S. Geological Survey Open-File Report 03-463

    Google Scholar 

  • Chleborad AF (2003) Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington, area. U.S Department of the Interior, U.S. Geological Survey, Denver

    Google Scholar 

  • Chleborad AF, Baum RL, Godt JW (2006) Rainfall thresholds for forecasting landslide in the seattle. Washington, Area—Exceedance and probability. U.S. Geological Survey Open File Report 2006-1064

    Google Scholar 

  • Chok YH, Kaggwa W, Jaksa MB, Griffiths DV (2004) Modelling the effects of vegetation on stability of slopes. In: Proceedings of the ninth Australia New Zealand conference on geomechanics. Auckland, New Zealand, pp 391–397

    Google Scholar 

  • Chorley RJ, Kennedy BA (1971) Physical geography—A systems approach. Prentice-Hall, London

    Google Scholar 

  • Chugh AK, Stark TD (2005) Permanent seismic deformation analysis of a landslide. Landslides 3(1):2–12

    Article  Google Scholar 

  • Chung CJ (2006) Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. Comput Geosci 32(8):1052–1068

    Article  Google Scholar 

  • Chung CJ, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sensing 65(12):1389–1399

    Google Scholar 

  • Chung C, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publishers, Dordrecht, pp 107–134

    Google Scholar 

  • Claessens L, Heuvelink GBM, Schoorl MJ, Veldkamp A (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surf Proc Land 30:461–477

    Article  Google Scholar 

  • Clark AR, Moore R, Palmer JS (1996) Slope monitoring and early warning systems: Application to coastal landslide on the south and east coast of England, UK. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1531–1538

    Google Scholar 

  • Clark AR, Fort D, Davis GM (2000) The strategy, management and investigation of coastal landslides at Lyme Regis, Dorset. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 279–286

    Google Scholar 

  • Colesanti C, Wasowski J (2004) Satellite SAR interferometry for wide-area slope hazard detection and site-specific monitoring of sloe landslides. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 795–802

    Google Scholar 

  • Collison AJC, Anderson MG (1996) Using a combined slope hydrology/stability model to identify suitable conditions for landslide prevention by vegetation in the humid tropics. Earth Surf Proc Land 21(8):737–747

    Article  Google Scholar 

  • Comegna L, Urciuoli G, Picarelli L (2004) The role of pore pressures on the mechanics of mudslides. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1183–1188

    Google Scholar 

  • Conolly H (1997) World wide web pages for slope design. School of Engineering, University of Durham, UK

    Google Scholar 

  • Cornforth DH, Mikkelsen PE (1996) Continuous monitoring of the slope above an excavation within a marginally stable landslide. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1539–1544

    Google Scholar 

  • Costa-Cabral MC, Burges SJ (1994) Digital elevation model networks (DEMON): a model of flow over hill slopes for computation of contributing and dispersal areas. Water Resour Res 30(6):1681–1692. Accessed 26 Oct 2010

    Google Scholar 

  • Cotza G (2009) Geologische und geotechnische Verhältnisse der Massenbewegungen bei Pontives (Grödnertal, Südtirol). University of Vienna, Austria

    Google Scholar 

  • Coulomb CA (1776) Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l’architecture. Memoires de l’Academie Royale pres Divers Savants 7:343–387

    Google Scholar 

  • Cristescu N (1989) Rock rheology. Springer, Berlin

    Google Scholar 

  • Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Env Geol 35(2):131–145

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3:81–93

    Article  Google Scholar 

  • Crosta GB, Frattini P (2008) Rainfall-induced landslides and debris flows. Hydrol Process 22(4):473–477

    Article  Google Scholar 

  • Crozier MJ (1989) Landslides: causes, consequences and environment. Taylor & Francis, Routledge

    Google Scholar 

  • Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Proc Land 24(9):825–833

    Article  Google Scholar 

  • Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In: Proceedings of the third Australia and New Zealand conference on Geomechanics. New Zealand Institute of Engineers, pp 247–251

    Google Scholar 

  • Crozier MJ, Glade T (2005) Landslide hazard and risk: issues, concepts, and approach. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 1–40

    Google Scholar 

  • Crozier MJ, Preston NJ (1999) Modelling changes in terrain resistance as a component of landform evolution in unstable hill country. In: Hergarten S, Neugebauer HJ (eds) Process modelling and landform evolution. Springer, Berlin, pp 267–284

    Google Scholar 

  • Cruden DM (1991) A very simple definition for a landslide. IAEG Bulletin, pp 27–29

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). Washington, DC, USA: National Research Council, Transportation and Research Board Special Report 247, pp 36–75

    Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  • D’Ambrosio D, Di Gregorio S, Iovine G, Lupiano V, Rongo R, Spataro W (2003) First simulations of the Sarno debris flows through cellular automata modelling. Geomorphology 54(1–2):91–117

    Article  Google Scholar 

  • D’Orsi R (2006) Alerta Rio—The Rio de Janeiro warning system against severe weather and mass movements. Presentation at laram summer school, Ravello, Italy, 2006

    Google Scholar 

  • D’Orsi R, Feijo RL, Paes NM (2004) 2,500 operational days of Alerta Rio System—History. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 549–555

    Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28(5):527–545

    Article  Google Scholar 

  • Dai Z-Y, Liu Y, Zhang L-X, Ou Z-H, Zhou C, Liu Y-Z (2008) Landslide monitoring based on high-resolution distributed fiber optic stress sensor. J Electron Sci Technol China 6(4):416–419

    Google Scholar 

  • Dearing J (2004) Non-linear dynamics. In: Goudie A (ed) Encyclopedia of Geomorphology. Taylor & Francis, Routledge, pp 721–725

    Google Scholar 

  • Deb SK, El-Kadi AI (2009) Susceptibility assessment of shallow landslides on Oahu, Hawaii, under extreme-rainfall events. Geomorphology 108(3–4):219–233. Accessed 10 Sep 2010

    Google Scholar 

  • Demoulin A, Chung CJ (2007) Mapping landslide susceptibility from small datasets: A case study in the Pays de Herve (E Belgium). Geomorphology 89(3–4):391–404

    Article  Google Scholar 

  • Deparis J, Fricout B, Jongmans D, Villemin T, Effendiantz L, Mathy A (2008) Combined use of geophysical methods and remote techniques for characterizing the fracture network of a potentially unstable cliff site (the ‘Roche du Midi’, Vercors massif, France). J Geophys Eng 5:147

    Google Scholar 

  • Derron MH, Blikra LH, Jaboyedoff M (2005) High resolution digital elevation model analysis for landslide hazard assessment (Åkerneset, Norway). In: Senneset K, Flaate K, Larsen JO (eds) Landslide and Avalanches. ICFL 2005, Norway. Taylor & Francis Group, London, pp 101–106

    Google Scholar 

  • Dewitte O, Chung C, Demoulin A (2006) Reactivation hazard mapping for ancient landslides in West Belgium. Nat Hazards Earth Syst Sci 6(4):653–662

    Article  Google Scholar 

  • Dhakal G, Yoneda T, Kato M, Kaneko K (2002) Slake durability and mineralogical properties of some pyroclastic and sedimentary rocks. Eng Geol 65(1):31–45

    Article  Google Scholar 

  • Di Maio C, Onorati R (2000) Influence of pore liquid composition on the shear strength of an active clay. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 463–468

    Google Scholar 

  • Die Zeit H (2010) Erdbeben in Italien: “Trinken Sie lieber einen!”. http://www.zeit.de/2010/37/T-Erdbeben. Accessed 13 Sep 2010

  • Dietrich WE, Real de Asua R, Coyle1 J, Orr B, Trso M (1998) A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Stillwater Ecosystem, Watershed & Riverine Sciences, Berkley, USA

    Google Scholar 

  • Dikau R (2005) Geomorphologische Perspektiven integrativer Forschungsansätze in Physischer Geographie und Humangeographie. In: Wardenga U, Müller-Mahn D (eds) Möglichkeiten und Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie. forum ifl. Leibniz-Institut für Länderkunde, Leipzig, pp 91–108

    Google Scholar 

  • Dikau R (2006) Komplexe Systeme in der Geomorphologie. Mitteilungen der Österreichischen Geographischen Gesellschaft 148:125–150

    Google Scholar 

  • Dikau R, Glade T (2003) Nationale Gefahrenhinweiskarte gravitativer Massenbewegungen. In: Liedtke H, Mäusbacher R, Schmidt K-H (eds) Relief, Boden und Wasser. Nationalatlas Bundesrepublik Deutschland. Spektrum Akademischer Verlag, Heidelberg, pp 98–99

    Google Scholar 

  • Dikau R, Weichselgärtner J (2005) Der unruhige Planet. Der Mensch und die Naturgewalten. 1st ed. Primus Verlag, Darmstadt

    Google Scholar 

  • Dikau R, Brunsden D, Schrott L (1996) Landslide recognition: identification, movement and causes: identification, movement and courses. Wiley, New York

    Google Scholar 

  • Dixon N, Spriggs M (2007) Quantification of slope displacement rates using acoustic emission monitoring. Canad Geotech J 44(8):966–976. Accessed 15 Oct 2010

    Google Scholar 

  • Duncan JM, Wright SG (2005) Soil strength and slope stability. Wiley, New York

    Google Scholar 

  • Eberhardt E (2003a) Rock slope stability analysis—Utilization of advanced numerical techniques. University of British Columbia, Vancouver

    Google Scholar 

  • Eberhardt E (2003b) Rock slope stability analysis—Utilization of advanced numerical techniques. University of British Columbia, Vancouver

    Google Scholar 

  • Eberhardt E, Spillmann T, Maurer H, Willenberg H, Loew S, Stead D (2004) The Randa Rockslide Laboratory: establishing brittle and ductile instability mechanisms using numerical modelling and microseismicity. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 481–488

    Google Scholar 

  • Eberhardt E, Watson AD, Loew S (2008) Improving the interpretation of slope monitoring and early warning data through better understanding of complex deep-seated landslide failure mechanisms. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 39–51

    Chapter  Google Scholar 

  • Eeckhaut MVD, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32(5):754–769

    Article  Google Scholar 

  • Egger P, Mair V (2009) Innovative Maßnahmen zur gefahrenreducktion am beispiel Grissianerbach. J für Wildbach-, Lawinen-, Erosion- und Steinschlagschutz 161:1–15

    Google Scholar 

  • Eidsvig UM, Medina-Cetina Z, Kveldsvik V, Glimsdal S, Harbitz CB, Sandersen F (2011) Risk assessment of a tsunamigenic rockslide at Åknes. Nat Hazards 56(2):529–545

    Article  Google Scholar 

  • Ekanayake JC, Phillips CJ (1999) A model for determining thresholds for initiation of shallow landslides under near-saturated conditions in the East Coast region, New Zealand. J Hydrol (NZ) 38(1):1–28

    Google Scholar 

  • Eng HJ, Li W, Ma TH, Li CJ (2009) Geological disasters early warning and forecast information-releasing system: A new generation of releasing system based on ann and gis. J Nat Disasters 18(1):187–193

    Google Scholar 

  • Fairfield J, Leymarie P (1991) Drainage networks from grid digital elevation models. Water Resour Res 27(5):709–717. Accessed 26 Oct 2010

    Google Scholar 

  • Fang H-Y (1990) Foundation engineering handbook. Springer, Berlin

    Google Scholar 

  • Favis-Mortlock D (1998) A self-organizing dynamic systems approach to the simulation of rill initiation and development on hill slopes. Comput Geosci 24(4):353–372

    Article  Google Scholar 

  • Favis-Mortlock D (2004) Self-organization and cellular automata models. In: Wainwright J, Mulligan M (eds) Environmental modelling: finding simplicity in complexity. Wiley, New York, pp 349–370

    Google Scholar 

  • Favis-Mortlock D, De Boer D (2003) Simple at heart? Landscape as a self-organizing complex system. In: Trudgill S, Roy A (eds) Contemporary meanings in physical geography. Oxford University Press, Oxford, pp 127–172

    Google Scholar 

  • Felgentreff C, Glade T (2007) Naturrisiken und Sozialkatastrophen. 1st ed. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Ferentinou MD, Sakellariou M, Matziaris V, Charalambous S (2006) An introduced methodology for estimating landslide hazard for seismic and rainfall induced landslides in a geographical information system environment. In: Nadim F, Pöttler R, Einstein H, Klapperich H, Kramer S (eds) Geohazards Proceedings of the ECI Conference on Geohazards. Lillehammer, Norway, pp 1–8

    Google Scholar 

  • Fernandez Merodo JA, Pastor M, Mira P, Tonni L, Herreros MI, Gonzalez E, Tamagnini R (2004) Modelling of diffuse failure mechanisms of catastrophic landslides. Comput Methods Appl Mech Eng 193(27–29):2911–2939

    Article  Google Scholar 

  • Fernandez-Steeger TM, Arnhardt C, Hass S, Niemayer F, Nakaten B, Homfeld SD, Asch K, Azzam R, Bill R, Ritter H (2009) SLEWS—A prototype system for flexible real time monitoring of landslide using on open spatial data infrastructure and wireless sensor networks. In: Geotechnologien Science Report 13. Early Warning System in Earth Management. pp 3–15

    Google Scholar 

  • Fernández-Steeger TM, Rohn J, Czurda K (2002) Identification of landslide areas with neural nets for hazard analysis. In: Rybár J, Stemberk J, Wagner P (eds) Landslides: Proceedings of the first European conference on landslides, June 24–26, 2002. Taylor & Francis, Czech Republic, pp 163–168

    Google Scholar 

  • Ferretti A, Prati C, Rocca F, Casagli N, Farina P, Young B (2005) Permanent Scatterers technology: a powerful state of the art tool for historic and future monitoring of landslides and other terrain instability phenomena. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 389–397

    Google Scholar 

  • Fiorucci F, Cardinali M, Carlà R, Mondini A, Santurri L, Guzzetti F (2010) Comparison of event-based landslide inventory maps obtained interpreting satellite images and aerial photographs. Geophys Res Abstracts 12

    Google Scholar 

  • Flentje PN, Chowdhury RN, Tobin P, Brizga V (2005) Towards real-time landslide risk management in an urban area. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 741–751

    Google Scholar 

  • Fonstad MA (2006) Cellular automata as analysis and synthesis engines at the geomorphology-ecology interface. Geomorphology 77(3–4):217–234

    Article  Google Scholar 

  • Fonstad M, Marcus WA (2003) Self-organized criticality in riverbank systems. Ann Assoc Amer Geographers 93(2):281–296. Accessed 4 Nov 2010

    Google Scholar 

  • Fourniadis IG, Liu JG, Mason PJ (2007a) Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery: Wushan-Badong. Geomorphology 84(1–2):126–144

    Article  Google Scholar 

  • Fourniadis IG, Liu JG, Mason PJ (2007b) Regional assessment of landslide impact in the Three Gorges area, China, using ASTER data: Wushan-Zigui. Landslides 4(3):267–278

    Article  Google Scholar 

  • Franklin JA (1984) Slope instrumentation and monitoring. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 143–170

    Google Scholar 

  • Frattini P, Crosta G, Sosio R (2009) Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol Process 23(10):1444–1460

    Article  Google Scholar 

  • Fredlund DG (2007) Slope stability hazard management systems. J Zhejiang Univ Sci A 8(11):1695–1711. Accessed 28 Oct 2010

    Google Scholar 

  • Freeman T (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17(3):413–422

    Article  Google Scholar 

  • Froese CR, Van der Kooij M, Kosar K (2004) Advances in the application of inSAR to complex, slowly moving landslides in dry and vegetated terrain. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1255–1264

    Google Scholar 

  • Froese CR, Murray C, Cavers DS, Anderson WS, Bidwell AK, Read RS, Cruden DM, Langenberg W (2005) Development and implementation of a warning system for the South Peak of Turtle Mountain. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 705–712

    Google Scholar 

  • Froese CR, Carter G, Langenberg W, Morena F (2006) Emergency response planning for a second catastrophic rock slide at Turtle Mountain, Alberta. In: First specialty conference on Disaster Mitigation. Calgary, Canada, pp 1–10

    Google Scholar 

  • Froese CR, Jaboyedoff M, Pedrazzini A, Hungr O, Moreno F (2009) Hazard mapping for the eastern face of Turtle Mountain, adjacent to the Frank Slide, Alberta, Canada. Landslide Processes, pp 283–289

    Google Scholar 

  • Fukuzono T (1990) Recent studies on time prediction of slope failure. Landslide News 4:9–12

    Google Scholar 

  • Furuya G, Sassa K, Fukuoka H, Hiura H, Wang J, Yang Q (2000) Monitoring of slope deformation in Lishan Landsiide, Xi’an, China. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 591–596

    Google Scholar 

  • Gallagher R, Appenzeller T (1999) Beyond reductionism. Science 284(5411):79

    Google Scholar 

  • Ganerød GV, Grøneng G, Rønning JS, Dalsegg E, Elvebakk H, Tønnesen JF, Kveldsvik V, Eiken T, Blikra LH, Braathen A (2008) Geological model of the Åknes rockslide, Western Norway. Eng Geol 102(1–2):1–18

    Article  Google Scholar 

  • García A, Hördt A, Fabian M (2010) Landslide monitoring with high resolution tilt measurements at the Dollendorfer Hardt landslide, Germany. Geomorphology 120(1–2):16–25

    Google Scholar 

  • GEOSE NS (2009) Felsmonitor Winkelgrat. Alarm- und Überwachungssystem zur Sicherung der Kreisstraße 7145 gegen Felssturz. Messsystem- und Softwareentwicklung, Ebringen

    Google Scholar 

  • Geotechnical Engineering Office ed. (2007) Thirty years of slope safety practice in Hong Kong. Hong Kong, China

    Google Scholar 

  • Giannecchini R (2006) Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Nat Hazards Earth Syst Sci 6:357–364

    Article  Google Scholar 

  • Giannecchini R, Naldini D, D’Amato Avanzi G, Puccinelli A (2007) Modelling of the initiation of rainfall-induced debris flows in the Cardoso basin (Apuan Alps, Italy). Quaternary International 171-172, pp 108–117. Accessed 18 Oct 2010

    Google Scholar 

  • Giraud RE (2002) Movement history and prelimanary hazard assessment of the Heather Drive Landslides, Layton, Davis County, Utah. Utah Geological Survey, Utah Department of Natural Resources, Utah

    Google Scholar 

  • Gitirana Jr, G (2005) Weather-related geo-hazard assessment model for railway embankment stability. Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon

    Google Scholar 

  • Gitirana Jr, G, Santos MA, Fredlund MD (2008) Three-dimensional analysis or the Lodalen Landslide. In: Geosustainability and geohazard mitigation. Proceedings of Geocongress 2008. New Orleans, Louisiana, USA, pp 1–5

    Google Scholar 

  • Glade T (1997) The temporal and spatial occurrence of rainstorm-triggered landslide events in New Zealand. School of Earth Science Institute of Geography, Victoria University of Wellington, New Zealand

    Google Scholar 

  • Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Env Geol 35(2):160–174

    Article  Google Scholar 

  • Glade T (2000) Modelling landslide-triggering rainfalls in different regions of New Zealand—the soil water status model. Zeitschrift für Geomorphologie Suppl.-Bd. 122:63–84

    Google Scholar 

  • Glade T (2001) Landslide hazard assessment and historical landslide data—an inseparable couple? In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Springer, Berlin, pp 153–167

    Google Scholar 

  • Glade T, Crozier MJ (2005a) A review of scale dependency in landslide hazard and risk analysis. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 75–138

    Google Scholar 

  • Glade T, Crozier MJ (2005b) The nature of landslide hazard impact. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 43–74

    Google Scholar 

  • Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure Appl Geophys 157(6):1059–1079

    Article  Google Scholar 

  • Glantz MH (2009) Heads Up!: Early Warning Systems for Climate-, Water- And Weather-Related Hazards. United Nations University Press, Tokyo

    Google Scholar 

  • Glawe U, Lotter M (1996) Time prediction of rocl slope failures based on monitoring results. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1551–1555

    Google Scholar 

  • Godt JW, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Proc Land 31(1):97–110

    Article  Google Scholar 

  • Gomez C, Lavigne F, Hadmoko DS, Lespinasse N, Wassmer P (2009) Block-and-ash flow deposition: A conceptual model from a GPR survey on pyroclastic-flow deposits at Merapi Volcano, Indonesia. Geomorphology 110(3–4):118–127

    Article  Google Scholar 

  • Gong QM, Zhao J, Jiao YY (2005) Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn Undergr Space Technol 20(2):183–191

    Article  Google Scholar 

  • Graf C, Badoux A, MacArdell B, Dufour F, Rhyner J, Kuntner R (2006) A warning system for natural hazards in summer at the Illgraben. In: Proceedings of the fourth Swiss geoscience meeting. Bern, Switzerland

    Google Scholar 

  • Graham J (1984) Methods of slope stability analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 171–215

    Google Scholar 

  • Greco R, Guida A, Damiano E, Olivares L (2010) Soil water content and suction monitoring in model slopes for shallow flowslides early warning applications. Phys Chem Earth 35(3–5):127–136

    Google Scholar 

  • Greif V, Sassa K, Fukuoka H (2004) Monitoring of rock displacement at Bitchu-Matsuyama Rock Slope in Japan using Linear Variable Differential Transformer (LVDT) Sensors. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 773–779

    Google Scholar 

  • Greiving S, Glade T (2011) Risk governance. In: Bobrowsky P (ed) Encyclopedia of natural hazards. Springer, Berlin

    Google Scholar 

  • Grøneng G, Christiansen HH, Nilsen B, Blikra LH (2010) Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway. Landslides 1(8):1–15

    Google Scholar 

  • Gunzberger Y, Merrien-Soukatchoff V, Senfaute G, Piguet J-P (2004) Field investigations, monitoring and modeling in the identification of rock fall causes. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 557–563

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: A case study in the Upper Tiber River Basin, Central Italy. Environ Manag 25(3):247–263. Accessed 7 Oct 2010

    Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4):272–299. Accessed 25 Oct 2010

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3–4):239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Hadjigeorgiou J, Kyriakou E, Papanastasiou P (2006) A road embankment failure near Pentalia in southwest Cyprus. In: International conference on the stability of Rock Slopes in open pit mining and civil engineering. The South African Institute of Mining and Metallurgy, Cape Town, South Africa, pp 343–352

    Google Scholar 

  • Häge M, Joswig M (2009) Microseismic study using small arrays in the swarm area of Nový Kostel: increased detectability during an inter-swarm period. Studia Geophysica et Geodaetica 52(4):651–660. Accessed 15 Oct 2010

    Google Scholar 

  • Hall P (2007) Early warning systems: reframing the discussion. The Australian J Emerg Manag 22(2):32–36. Accessed 12 Oct 2010

    Google Scholar 

  • Hamm NAS, Hall JW, Anderson MG (2006) Variance-based sensitivity analysis of the probability of hydrologically induced slope instability. Comput Geosci 32(6):803–817

    Article  Google Scholar 

  • Hammah R, Yacoub T, Curran J (2006) Investigating the performance of the shear strength reduction (SSR) method on the analysis of reinforced slopes. In: Proceedings of the 59th canadian geotechnical and seventh joint CGS/IAH-CNC groundwater specialty conference. Vancouver, British Columbia, Canada

    Google Scholar 

  • Hammah RE, Yacoub TE, Curran JH (2008) Probabilistic slope analysis with the finite element method. In: Proceedings of the 41st U.S. symposium on rock mechanics and the fourth U.S.-Canada rock mechanics symposium. Asheville, North Carolina, USA

    Google Scholar 

  • Hammah RE, Yacoub TE, Curran JH (2009) Numerical modelling of slope uncertainty due to rock mass jointing. In: Proceedings of the international conference on rock joints and jointed rock masses. pp 7–8

    Google Scholar 

  • Hammond C, Hall D, Miller S, Swetik P (1992) Level I stability analysis (LISA). U.S. Department of Agriculture, Forest Service, Intermountain Research Station

    Google Scholar 

  • Haneberg WC (2004) The ins and outs of airborne LIDAR: An introduction for practicing engineering geologists. AEG News 48(1):16–19

    Google Scholar 

  • Hart RD (1993) An introduction to distinct element modelling for rock engineering. In: Proceedings of the seventh international congress on rock mechanics. Pergamon Press, Aachen, pp 1881–1892

    Google Scholar 

  • Hecht S (2001) Anwendung refraktionsseismischer Methoden zur Erkundung des oberflächennahen Untergrundes: Mit acht Fallbeispielen aus Südwestdeutschland. University of Stuttgart, Germany

    Google Scholar 

  • Heincke B, Maurer H, Green AG, Willenberg H, Spillmann T, Burlini L (2006) Characterizing an unstable mountain slope using shallow 2D and 3D seismic tomography. Geophysics 71(6):241–256

    Article  Google Scholar 

  • Heincke B, Günther T, Dalsegg E, Ronning JS, Ganerod GV, Elvebakk H (2010) Combined three-dimensional electric and seismic tomography study on the Aknes rockslide in western Norway. J Appl Geophys 70:292–306

    Google Scholar 

  • Heng M (2008) Comparative study of rock slope stability analysis based on SLOPE/W and fuzzy evaluation. Express Information of Mining Industry 476(9):29–26

    Google Scholar 

  • Hennrich K (2000) Modelling critical water contents for slope stability and associated rainfall thresholds using computer simulations. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 713–718

    Google Scholar 

  • Highland LM, Gori PL (2008) Two approaches for public landslide awareness in the United States—U.S. geological survey warning system and a landslide film documentary. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes. From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. pp 1173–1176

    Google Scholar 

  • Higuchi K, Fujisawa K, Asai K, Pasuto A, Marcato G (2007) Application of new landslide monitoring technique using optical fiber sensor at Takisaka Landslide, Japan. In: AEG Special Publication. Proceedings of the first North American landslide conference. Vail, Colorado, pp 1074–1083

    Google Scholar 

  • Hiura H, Furuya G, Fukuoka H, Sassa K (2000) Investigation of the groundwater distribution in a crystalline Schist Landslide Zentoku, Shikoku Island, Japan. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 719–724

    Google Scholar 

  • Hu XW, Tang HM, Li JS (2008) General digital camera-based experiments for large-scale landslide physical model measurement. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future proceedings of the tenth international symposium on landslides and engineered slopes, pp 249–255

    Google Scholar 

  • Hu H, Fernandez-Steeger TM, Dong M, Nguyen HT, Azzam R (2010) 3D modeling using LiDAR data and its geological and geotechnical applications. In: Geoinformatics. 18th international conference on geoinformatics. Beijing, China, pp 1–6

    Google Scholar 

  • Huang Jr C, Kao SJ, Hsu ML, Lin JC (2006) Stochastic procedure to extract and to integrate landslide susceptibility maps: an example of mountainous watershed in Taiwan. Nat Hazards Earth Syst Sci 6:803–815

    Google Scholar 

  • Huang Z, Law KT, Liu H, Jiang T (2008) The chaotic characteristics of landslide evolution: a case study of Xintan landslide. Environ Geol, 56:1585–1591

    Google Scholar 

  • Hubble TCT (2004) Slope stability analysis of potential bank failure as a result of toe erosion on weir-impounded lakes: an example from the Nepean River, New South Wales, Australia. Marine Freshwater Res 55(1):57–65. Accessed 27 Oct 2010

    Google Scholar 

  • Hübl H (2000) Frühwarnsysteme als passive Schutzmaßnahmen in Wildbacheinzugsgebieten. In: Wildbach und Lawinenverbauung (ed) Jahresbericht 2000 des Bundesministeriums für Landwirtschaft, Forst, Wasser und Umwelt. p 46

    Google Scholar 

  • Huggel C, Ramírez JM, Calvache M, González H, Gutierrez C, Krebs R (2008) A landslide early warning system within an integral risk management strategy for the Combeima-Tolima Region, Colombia. In: The international disaster and risk conferences. IDRC Davos, Switzerland, pp 273–276

    Google Scholar 

  • Huggel C, Khabarov N, Obersteiner M, Ramírez JM (2009) Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia. Nat Hazards 52(2):501–518

    Article  Google Scholar 

  • Hungr O (1995) A model for the run out analysis of rapid flow slides, debris flows and avalanches. Can Geotech J 32(4):610–623

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35(5):978–992

    Article  Google Scholar 

  • Ibraim I, Anderson MG (2003) A new approach to soil characterisation for hydrology-stability analysis models. Geomorphology 49(3–4):269–279

    Article  Google Scholar 

  • Imaizumi F, Sidle RC, Kamei R (2008) Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf Proc Land 33(6):827–840

    Article  Google Scholar 

  • Iovine G, D’Ambrosio D, Di Gregorio S (2005) Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology 66(1–4):287–303

    Article  Google Scholar 

  • Ishida T, Kanagawa T, Kanaori Y (2010) Source distribution of acoustic emissions during an in situ direct shear test: Implications for an analog model of seismogenic faulting in an inhomogeneous rock mass. Eng Geol 110(3–4):66–76

    Article  Google Scholar 

  • Isle of Wight Centre for the Coastal Environment (2010) Isle of Wight Centre for the Coastal Environment. http://www.coastalwight.gov.uk/index.html. Accessed 2 Dec 2010

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Iverson RM (2005) Regulation of landslide motion by dilatancy and pore pressure feedback. J Geophys Res 110:1–17

    Google Scholar 

  • Jakob M, Holm K, Lange O, Schwab JW (2006) Hydrometeorological thresholds for landslide initiation and forest operation shutdowns on the north coast of British Columbia. Landslides 3(3):228–238

    Article  Google Scholar 

  • Janbu N (1996) Slope stability evaluations in engineering practice. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 17–34

    Google Scholar 

  • Jian W, Wang Z, Yin K (2009) Mechanism of the Anlesi landslide in the Three Gorges Reservoir, China. Eng Geol 108(1–2):86–95

    Article  Google Scholar 

  • Jiang T, Wang W, Cui JL, Chen XT (2009) Landslide forecast based on state vector method. Yantu Lixue/Rock Soil Mech 30(6):1747–1752

    Google Scholar 

  • Jing L (1998) Formulation of discontinuous deformation analysis (DDA)–an implicit discrete element model for block systems. Eng Geol 49(3–4):371–381

    Article  Google Scholar 

  • Jomard H, Lebourg T, Binet S, Tric E, Hernandez M (2007) Characterization of an internal slope movement structure by hydrogeophysical surveying. Terra Nova 19(1):48–57

    Article  Google Scholar 

  • Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bulletin de la Société Géologique de France 178(2):101–112

    Article  Google Scholar 

  • Jongmans D, Renalier F, Kniess U, Bièvre G, Schwartz S, Pathier E, Orengo Y, Villemin T, Delacourt C (2008) Characterisation of the Avignonnet landslide (French Alps) using seismic techniques. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 395–401

    Google Scholar 

  • Joswig M (2008) Nanoseismic monitoring fills the gap between microseismic networks and passive seismic. First Break 26:81–88

    Google Scholar 

  • Karnawati D, Ibriam I, Anderson MG, Holcombe EA, Mummery GT, Renaud J-P, Wang Y (2005) An initial approach to identifying slope stability controls in Southern Java and to providing community-based landslide warning information. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 733–763

    Google Scholar 

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Wiley, Blackwell

    Google Scholar 

  • Keaton JR, and DeGraff JV (1996) Surface observation and geologic mapping. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). Washington, DC, USA: National Research Council, Transportation and Research Board Special Report 247, pp 178–230

    Google Scholar 

  • Keaton JR, Gailing RW (2004) Monitoring slope deformation with quadrilaterals for pipeline risk management. In: ASME conference proceedings. Proceedings of the 2004 international pipeline conference (IPC). Calgary, Canada, pp 269–274

    Google Scholar 

  • Keefer DK, Wilson RC, Mark RK, Brabb EE, BROWN III WM, Ellen SD, Harp EL, Wieczorek GF, Alger CS, Zatkin RS (1987) Real-time landslide warning during heavy rainfall. Science 238(4829):921

    Google Scholar 

  • Keersmaekers R, Maertens J, Van Gemert D, Haelterman K (2008) Modeling landslide triggering in layered soils. In: Chen Z-Y, Zhang J-M, Ho K (eds) Landslides and engineered slopes: From the past to the future. Proceedings of the 10th international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 761–767

    Google Scholar 

  • Kellezi L, Allkja S, Hansen PB (2005) Landslide FE stability analysis. In: Proceedings of the IACMAG. Italy, pp 545–553

    Google Scholar 

  • Kienholz H, Hafner H, Schneider G, Zimmermann M (1984) Methods for the assessment of mountain hazards and slope stability in Nepal. Erdwissenschaftliche Forschung 18:147–160

    Google Scholar 

  • Kilburn CR, Petley DN (2003) Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54(1–2):21–32

    Article  Google Scholar 

  • Kim HW (2008) Development of wireless sensor node for landslide detection. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the 10th international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1183–1187

    Google Scholar 

  • Kjelland NH, Hutchinson DJ, Diederichs MS, Lawrence MS, Harrap R (2004) Development of GIS-based decision-support systems for stability analysis of slow moving, active landslides using geotechnical modeling. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1299–1304

    Google Scholar 

  • Kneale P (1987) Instrumentation of pore pressure and soil water suction. In: Anderson MG (ed) Slope stability: geotechnical engineering and geomorphology. Wiley, New York, pp 77–112

    Google Scholar 

  • Knödel K, Krummel H, Lange G (2005) Handbuch zur Erkundung des Untergrundes von Deponien: Geophysik. Springer, Berlin

    Google Scholar 

  • Kohn J-C (2006) Potenzial der Auswertung des Archivs der Straßenbauverwaltung für die Risikoforschung - Nutzung des Archivs der Baustoff und Bodenprüfstelle Ludwigsburg als historische Quelle. University of Bonn, Germany

    Google Scholar 

  • Krause R (2009) Felsmonitor Winkelgrat - Erfahrungen mit einem sensorbasierten Frühwarnsystem zum Schutz vor Bergsturz. Presentation at SLEWS and ILEWS Workshop on Warn-und Risikomanagement bei Massenbewegungen, Hannover, Germany, 2009

    Google Scholar 

  • Krauter E, Lauterbach M, Feuerbach J (2007) Hangdeformationen–Beobachtungsmethoden und Risikoanalyse. geo-international & Forschungsstelle Rutschungen, pp 1–6

    Google Scholar 

  • Kreja R, Terhorst B (2005) GIS-gestützte Ermittlung rutschungsgefährdeter Gebiete am Schönberger Kapf bei Öschingen (Schwäbische Alb). Die Erde 136(4):395–412

    Google Scholar 

  • Kumar A, Sanoujam M (2006) Landslide studies along the national highway (NH 39) in Manipur. Nat Hazards 40(3):603–614

    Article  Google Scholar 

  • Kunlong YIN, Lixia C, Guirong Z (2007) Regional landslide hazard warning and risk assessment. Earth Sci Frontiers 14(6):85–93

    Google Scholar 

  • Kunz-Plapp T (2007) Vorwarnung, Vohersage und Frühwarnung. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen. 1st ed. Spektrum Akademischer Verlag, Heidelberg, pp 213–223

    Google Scholar 

  • Kupka M, Herle I, Arnold M (2009) Advanced calculations of safety factors for slope stability. Int J Geotech Eng 3(4):509–515. Accessed 27 Oct 2010

    Google Scholar 

  • Kusumi H, Nakamura M, Nishida K (2000) Monitoring of groundwater behaviour caused by rainfall in fracture zone of rock slope using electric resistivity method. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 871–876

    Google Scholar 

  • Kveldsvik V, Einstein HH, Nilsen B, Blikra LH (2008) Numerical analysis of the 650,000 m2 Åknes rock slope based on measured displacements and geotechnical data. Rock Mech Rock Eng 42(5):689–728

    Article  Google Scholar 

  • Kveldsvik V, Kaynia AM, Nadim F, Bhasin R, Nilsen B, Einstein HH (2009) Dynamic distinct-element analysis of the 800 m high Aknes rock slope. Int J Rock Mech Mining Sci 46(4):686–698

    Article  Google Scholar 

  • Larsen MC (2008) Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Adv Geosci 14:147–153

    Article  Google Scholar 

  • Lateh H, Anderson MG, Ahmad F (2008) CHASM—The model to predict stability of Gully Walls along the East-West highway in Malaysia: A case study. In: Proceeding of the first world landslide forum. ISDR, Tokyo, pp 340–343

    Google Scholar 

  • Lato M, Hutchinson J, Diederichs M, Kalenchuk K (2007) Evaluating block shape and block volume distributions of rock faces using LiDAR and 3DEC. In: Geophysical research abstracts

    Google Scholar 

  • Lauterbach M, Krauter E, Feuerbach J (2002) Satellitengestütztes Monitoring einer Großrutschung im Bereich eines Autobahndammes bei Landstuhl/Pfalz. Geotechnik 25(2):97–100

    Google Scholar 

  • Lea NL (1992) An aspect driven kinematic routine algorithm. In: Parsons AJ (ed) Overland flow: hydraulics and erosion mechanics. Taylor & Francis, Routledge, pp 374–388

    Google Scholar 

  • Lebourg T, Binet S, Jomard HET, El Bedoui S (2004) 3D geophysical survey of the “La Clapiere” landslide, southeastern France. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 851–856

    Google Scholar 

  • Lebourg T, Binet S, Tric E, Jomard H, El Bedoui S (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17(5):399–406. Accessed 15 Oct 2010

    Google Scholar 

  • Lee S (2006) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ Geol 52(4):615–623

    Article  Google Scholar 

  • Lee CF, Kwong AKL, Ghazavi M, Emami N (eds) (2001) Analysis of failed slope in saturated soft soils: A case study. In: Soft soil engineering. Taylor & Francis, Routledge, pp 11–116

    Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43(1–2):120–131. Accessed 25 Oct 2010

    Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2003) Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environ Geol 44(7):820–833

    Article  Google Scholar 

  • Leroueil S (2004) Geotechnics of slopes before failure. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 863–884

    Google Scholar 

  • Li AG, Tham LG, Lee CF, Yue QZ, Law KT, Deng JH (2004) Field instrumentation for a saprolite cut slope. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 571–576

    Google Scholar 

  • Li C, Knappett J, Feng X (2008) Centrifuge modelling of reservoir landslides in three. In: Proceedings of the international conference on landslide risk management. Vancouver, Canada, pp 732–735

    Google Scholar 

  • Li D, Yin K, Leo C (2009a) Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environ Earth Sci 60(4):677–687

    Article  Google Scholar 

  • Li D, Yin K, Gao H, Liu C (2009b) Design and application analysis of prediction system of geo-hazards based on GIS in the three gorges reservoir. In: Liu Y, Tang X (eds) International symposium on spatial analysis, spatial-temporal data modeling, and data mining. Proceedings of SPIE—The international society for optical engineering. Wuhan, Hubei, China

    Google Scholar 

  • Liao Z, Hong Y, Wang J, Fukuoka H, Sassa K, Karnawati D, Fathani F (2010) Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides 7(3):317–324

    Article  Google Scholar 

  • Liu S, Wang Z (2008) Choice of surveying methods for landslides monitoring. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an

    Google Scholar 

  • Lloyd DM, Wilkinson PL, Othmann MA, Anderson MG (2001) Predicting landslides: assessment of an automated rainfall based landslide warnings systems. In: Ho KKS, Li KS (eds) Geotechnical engineering—Meeting society’s needs. Taylor & Francis, Routledge, pp 135–139

    Google Scholar 

  • Lloyd DM, Anderson MG, Renaud JP, Wilkinson P, Brooks SM (2004) On the need to determine appropriate domains for hydrology-slope stability models. Adv Environ Res 8(3–4):379–386

    Article  Google Scholar 

  • Lollino G, Arattano M, Cuccureddu M (2002) The use of the automatic inclinometric system for landslide early warning: the case of Cabella Ligure (North-Western Italy). Phys Chem Earth 27(36):1545–1550

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Lumb P (1975) Slope failures in Hong Kong. Quart J Eng Geol Hydrogeol 8(1):31

    Google Scholar 

  • Luzi G, Pieraccini M, Macaluso G, Mecatti D, Noferini L, Atzeni C, Galgaro A, Teza G (2005) Ground based microwave interferometry for estimating the movement of landslides. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd, Vancouver, pp 309–314

    Google Scholar 

  • Macfarlane DF, Silvester PK, Benck JM, Whiford ND (1996) Monitoring strategy and performance of instrumentation int the clyde power project landslide, New Zealand. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1557–1564

    Google Scholar 

  • Maffei A, Martino S, Prestininzi A, Scarascia Mugnozza G, Pellegriono A (2004) The impact of alteration on DSGSD in crystalline-metamorphic rocks: the case of Mt. Granieri-Salineriti (Calabria - Italy). In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1247–1253

    Google Scholar 

  • Main IG (2000) A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences. Geophys J Int 142(1):151–161. Accessed 6 Oct 2010

    Google Scholar 

  • Majidi A, Choobbasti AJ (2008) Numerical analysis of Hollar landslide. Electron J Geotech Eng 13(B):1–10

    Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711

    Article  Google Scholar 

  • Malone AW (1997) Risk management and slope safety in Hong Kong. Trans Hong Kong Inst Eng 4(2–3):12–21

    Google Scholar 

  • Maria FA, Gianfranco F, Hélène VI (2004) Rock slope stability analysis based on photogrammetric surveys. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 789–794

    Google Scholar 

  • Marques R, Zêzere J, Trigo R, Gaspar J, Trigo I (2008) Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): relationships with the North Atlantic Oscillation. Hydrol Process 22(4):478–494

    Article  Google Scholar 

  • Marschallinger R, Eichkitz C, Gruber H, Heibl K, Hofmann R, Schmid K (2009) The Gschliefgraben Landslide (Austria): A remediation approach involving Torrent and avalanche control, geology, geophysics, geotechnics and geoinformatics. Austrian J Earth Sci 102(2):36–51

    Google Scholar 

  • Massey JB, Mak SH, Yim KP (2001) Community based approach to landslide risk reduction. In: Proceedings of the fourteenth Southeast Asian geotechnical conference. Hong Kong, China, pp 141–147

    Google Scholar 

  • Matsushi Y, Matsukura Y (2007) Rainfall thresholds for shallow landsliding derived from pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Peninsula, Japan. Earth Surf Proc Land 32(9):1308–1322

    Article  Google Scholar 

  • Matziaris VG, Ferentinou M, Sakellariou MG (2005) Slope stability assessment in unsaturated soils under rainfall conditions In: Agioutantis Z, Komnitsas K (eds) Ovidius University Annals Series: Civil Engineering 1 (7), pp 103–110

    Google Scholar 

  • Mayer J, Pohl W (2010) Risikokommunikation. In: Bell R, Pohl J, Glade T, Mayer J, Greiving S (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Germany, pp 180–202

    Google Scholar 

  • McGuffey V, Modeer J, Victor A, Turner AK (1996) Subsurface exploration. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). National Research Council, Transportation and Research Board Special Report 247, Washington, DC, USA, pp 231–277

    Google Scholar 

  • McInnes RG (2000) Managing ground instability in urban areas—A guide to best practice. Isle of Wight Centre for the Coastal Environment, UK

    Google Scholar 

  • Meidal KM, Moore DP (1996) Long-term performance of instrumentation at Dutchman’s Ridge. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1565–1577

    Google Scholar 

  • Meisina C, Scarabelli S (2007) A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87(3):207–223

    Article  Google Scholar 

  • Meisina C, Zucca F, Fossati D, Ceriani M, Allievi J (2006) Ground deformation monitoring by using the permanent scatterers technique: the example of the Oltrepo Pavese (Lombardia Italy). Eng Geol 87:240–259

    Article  Google Scholar 

  • Meric O, Jongmans D, Garambois S, Giraud A, Vengeon J-M (2004) Investigation of the gravitational movement of Séchilienne by geophysical methods. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 629–634

    Google Scholar 

  • Meric O, Garambois S, Jongmans D, Wathelet M, Chatelain JL, Vengeon JM (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Canad Geotech J 42(4):1105–1115. Accessed 15 Oct 2010

    Google Scholar 

  • Meric O, Garambois S, Malet J-P, Cadet H, Gueguen P, Jongmans D (2007) Seismic noise-based methods for soft-rock landslide characterization. Bulletin de la Societe Geologique de France 178(2):137–148. Accessed 15 Oct 2010

    Google Scholar 

  • Merrien-Soukatchoff V, Clément C, Senfaute G, Gunzburger Y (2005) Monitoring of a potential rockfall zone: The case of “Rochers de Valabres” site. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 416–422

    Google Scholar 

  • Mihalinec Z, Ortolan Ž (2008) Landslide “Granice”in Zagreb (Croatia). In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1587–1593

    Chapter  Google Scholar 

  • Mikkelsen PE (1996) Field instrumentation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). National Research Council, Transportation and Research Board Special Report 247, Washington DC, USA, pp 278–316

    Google Scholar 

  • Mikoš M, Vidmar A, Brilly M (2005) Using a laser measurement system for monitoring morphological changes on the Strug rock fall, Slovenia. Nat Hazards Earth Syst Sci 5:143–153

    Article  Google Scholar 

  • Mileti DS (1999) Disasters by design: A reassessment of natural hazards in the United States. Joseph Henry Press, Washington

    Google Scholar 

  • Mills JP, Buckley SJ, Mitchell HL, Clarke PJ, Edwards SJ (2005) A geomatics data integration technique for coastal change monitoring. Earth Surf Proc Land 30(6):651–664

    Article  Google Scholar 

  • Milsom J (2003) Field geophysics. Wiley, New York

    Google Scholar 

  • Ming-Gao T, Qiang XU, Huang RQ, Ming YAN (2006) 3DEC analysis on 6# high rock slope with joints in Xiaowan Hydropower Project. Hydrogeol Eng Geol (3)

    Google Scholar 

  • Mondini A, Carlà R, Reichenbach P, Cardinali M, Guzzetti F (2009) Use of remote sensing approach to detect landslide thermal behaviour. Geophys Res Abstracts (11)

    Google Scholar 

  • Montety V, de Marc V, Emblanch C, Malet J-P, Bertrand C, Maquaire O, Bogaard TA (2007) Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey. Earth Surf Proc Land 32(1):32–48

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the Topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Montgomery DR, Schmidt KM, Dietrich WE, McKean J (2009) Instrumental record of debris flow initiation during natural rainfall: implications for modeling slope stability. J Geophys Res 114:1–16. Accessed 28 Oct 2010

    Google Scholar 

  • Montrasio L, Valentino R (2007) Experimental analysis and modelling of shallow landslides. Landslides 4(3):291–296

    Article  Google Scholar 

  • Moore JR, Gischig V, Button E, Loew S (2010) Rockslide deformation monitoring with fiber optic strain sensors. Nat Hazards Earth Syst Sci 10:191–201

    Article  Google Scholar 

  • Moreiras SM (2005) Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 66(1–4):345–357. Accessed 25 Oct 2010

    Google Scholar 

  • Morgenstern NR, Martin CD (2008) Landslides: seeing the ground. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 3–24

    Chapter  Google Scholar 

  • Morrissey MM, Wieczorek GF, Morgan BA (2001) A comparative analysis of hazard models for predicting debris flows in Madison County, Virginia. USGS (ed) U.S. Department of the Interior, U.S. Geological Survey, Washington

    Google Scholar 

  • Murmelter G (2010) Erdrutsch löste Zugunglück im Vinschgau aus. Der Standard, 13.04.2010, p 6

    Google Scholar 

  • Nagarajan R, Roy A, Vinod Kumar R, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Environ 58(4):275–287. Accessed 25 Oct 2010

    Google Scholar 

  • Nakamura H (2004) Field instrumentation and laboratory investigation. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 541–548

    Google Scholar 

  • Nash DFT (1987) A comparative review of limit equilibrium methods of stability analysis. In: Anderson MG (ed) Slope stability: geotechnical engineering and geomorphology. Wiley, New York, pp 11–75

    Google Scholar 

  • National Research Council (2004) Partnerships for reducing landslide risk: assessment of the national landslide hazards mitigation strategy. The National Academies Press, Washington

    Google Scholar 

  • Navarro V, Yustres A, Candel M, López J, Castillo E (2010) Sensitivity analysis applied to slope stabilization at failure. Comput Geotech 37(7–8):837–845

    Google Scholar 

  • Neuhäuser B (2005) Probabilistische Beurteilung der Rutschanfälligkeit zur Einschätzung der Gefährdung durch Hangrutschungen am Beispiel Schwäbische Alb. In: Angewandte Geoinformatik. Beiträge zum 17. AGIT-Symposium. Salzburg, Austria, pp 129–137

    Google Scholar 

  • NOAA-USGS Debris Flow Task Force (2005) NOAA-USGS Debris-Flow Warning System—Final Report. US Geological Survey Open File Report 2006-1064

    Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28(3):323–344

    Article  Google Scholar 

  • Oboni F (2005) Velocity-rain relationship at the Cassas Landslide. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 280–284

    Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343

    Article  Google Scholar 

  • Okamoto T, Larsen JO, Matsuura S, Asano S, Takeuchi Y, Grande L (2004) Displacement properties of landslide masses at the initiation of failure in quick clay deposits and the effects of meteorological and hydrological factors. Eng Geol 72(3–4):233–251

    Article  Google Scholar 

  • Olalla C (2004) Recent developments in landslide monitoring. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 549–555

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzger R (2009) Characterization and monitoring of the Aknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019

    Article  Google Scholar 

  • Oregon Department of Geology and Mineral Industry (2010) Debris flow warnings. http://www.oregongeology.com/sub/Landslide/debrisflow.htm. Accessed 3 Dec 2010

  • Ortigao B, Justi MG (2004) Geotechnical instrumentation news. Geotech News 22(3):28–31

    Google Scholar 

  • Ortigão JAR, Sayao ASFJ (2004) Handbook of slope stabilisation. Birkhäuser, London

    Google Scholar 

  • Ortigao JAR, Justi MG, D’Orsi R, Brito H (2002) Rio-Watch 2001: the Rio de Janeiro landslide alarm system. In: Ho KKS, Li KS (eds) Proceedings, 14th Southeast Asian geotechnics conference—Geotechnical engineering: Meeting Society’s Needs. pp 237–241

    Google Scholar 

  • Pachauri AK, Gupta PV, Chander R (1998) Landslide zoning in a part of the Garhwal Himalayas. Environ Geol 36(3–4):325–334. Accessed 25 Oct 2010

    Google Scholar 

  • Pack R, Tarboton D (2004) Stability index mapping (SINMAP) applied to the prediction of shallow translational landsliding. Geophys Res Abstracts (6)

    Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) SINMAP—A stability index approach to terrain stability hazard mapping. http://www.neng.usu.edu/cee/faculty/dtarb/sinmap.pdf. Accessed 26 Oct 2010

  • Pack RT, Tarboton DG, Goodwin CN (2001) Assessing terrain stability in a GIS using SINMAP. In: GIS 2001. 15th annual GIS conference. British Columbia, Vancouver, pp 1–9

    Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN, Prasad A (2005) SINMAP 2—A stability index approach to terrain stability hazard mapping. http://www.hydrology.neng.usu.edu/sinmap2/sinmap2.pdf. Accessed 26 Oct 2010

  • Pagano L, Rianna G, Zingariello MC, Urciuoli G, Vinale F (2008) An early warning system to predict flowslides in pyroclastic deposits. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi‘an, pp 1259–1264

    Google Scholar 

  • Palm H, Staab S, Schmitz R (2003) Verkehrsicherheiten an klassifizierten Straßen im Hinblick auf Steinschlag- und Felssturzgefahr. In: Rutschungen in Rheinland-Pfalz. Erkennen, Erkunden und Sanieren. Felssicherung und Sanierung von Stützmauern. Weiterbildungsseminar III. Mainz, Germany, pp 16–22

    Google Scholar 

  • Parasnis DS (1997) Principles of applied geophysics. Springer, Berlin

    Google Scholar 

  • Pasculli A, Sciarra N (2006) A 3D landslide analyses with constant mechanical parameters compared with the results of a probabilistic approach assuming selected heterogeneities at different spatial scales. Giornale di Geologia Applicata 3:269–280

    Google Scholar 

  • Pasuto A, Silvano S (1998) Rainfall as a trigger of shallow mass movements. A case study in the Dolomites, Italy. Env Geol 35(2):184–189

    Article  Google Scholar 

  • Pasuto A, Silvano S, Berlasso G (2000) Application of time domain reflectometry (TDR) technique in monitoring the Pramollo Pass Landslide (Province of Udine, Italy). In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 1189–1194

    Google Scholar 

  • Persson H, Alén C, Lind BB (2007) Development of a pore pressure prediction model. In: McInnes R, Jakeways J, Fairbanks J, Mathie E (eds) Landslides and climate change. Challenges and solutions. Proceedings of the international conference on landslides and climate change. Taylor & Francis, Isle of Wight, UK, pp 21–24

    Google Scholar 

  • Petley DN, Allison RJ (1997) The mechanics of deep-seated landslides. Earth Surf Proc Land 22(8):747–758

    Article  Google Scholar 

  • Petley DN, Petley DJ (2006) On the initiation of large rockslides: perspectives from a new analysis of the Vaiont movement record. Earth Environ Sci 49(2):77–84

    Google Scholar 

  • Petley DN, Bulmer MH, Murphy W (2002) Patterns of movement in rotational and translational landslides. Geology 30(8):719

    Google Scholar 

  • Petley DN, Hearn GJ, Hart A (2005a) Towards the development of a landslide risk assessment for rural roads in Nepal. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 597–619

    Google Scholar 

  • Petley DN, Higuchi T, Dunning S, Rosser NJ, Petley DJ, Bulmer MH, Carey J (2005b) A new model for the development of movement in progressive landslides. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 350–358

    Google Scholar 

  • Petley DN, Higuchi T, Petley DJ, Bulmer MH, Carey J (2005c) Development of progressive landslide failure in cohesive materials. Geology 33(3):201–204

    Article  Google Scholar 

  • Petley DN, Mantovani F, Bulmer MH, Zannoni A (2005d) The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66(1–4):133–147

    Article  Google Scholar 

  • Petley DN, Petley DJ, Allison RJ (2008) Temporal prediction in landslides—Understanding the Saito effect. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Taylor & Francis, Xi’an, pp. 794–800

    Google Scholar 

  • Phillips J (1992a) Nonlinear dynamical systems in geomorphology: revolution or evolution? Geomorphology 5(3–5):219–229. Accessed 16 Sep 2010

    Google Scholar 

  • Phillips J (1992b) The end of equilibrium? Geomorphology 5(3–5):195–201. Accessed 16 Sep 2010

    Google Scholar 

  • Phillips JD (2003) Sources of nonlinearity and complexity in geomorphic systems. Progr Phys Geog 27(1):1

    Google Scholar 

  • Phillips JD (2006) Deterministic chaos and historical geomorphology: a review and look forward. Geomorphology 76(1–2):109–121

    Article  Google Scholar 

  • Phillips JD, Golden H, Cappiella K, Andrews B, Middleton T, Downer D, Kelli D, Padrick L (1999) Soil redistribution and pedologic transformations in coastal plain croplands. Earth Surf Proc Land 24(1):23–39

    Article  Google Scholar 

  • Picarelli L, Russo C (2004) Remarks on the mechanics of slow active landslides and the interaction with man-made works. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1141–1176

    Google Scholar 

  • Pirulli M (2009) The Thurwieser rock avalanche (Italian Alps): Description and dynamic analysis. Eng Geol 109(1–2):80–92

    Article  Google Scholar 

  • Poisel R, Angerer H, Pöllinger M, Kalcher T, Kittl H (2009) Mechanics and velocity of the Lärchberg-Galgenwald landslide (Austria). Eng Geol 109(1–2):57–66

    Article  Google Scholar 

  • Polemio M, Petrucci O (2000) Rainfall as a landslide triggering factor: An ovewiew of recent international research. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 1219–1226

    Google Scholar 

  • Prinz H, Strauß R (2006) Abriss der Ingenieurgeologie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9:1921–1928

    Article  Google Scholar 

  • Pueyo-Anchuela Ó, Pocoví Juan A, Soriano MA, Casas-Sainz AM (2009) Characterization of karst hazards from the perspective of the doline triangle using GPR–Examples from Central Ebro Basin (Spain). Eng Geol 108(3–4):225–236

    Article  Google Scholar 

  • Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process 5(1):59–79

    Article  Google Scholar 

  • Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron Eng 133(12):1532–1543. Accessed 28 Oct 2010

    Google Scholar 

  • Rahimi A, Rahardjo H, Leong E-C (2010) Effect of hydraulic properties of soil on rainfall-induced slope failure. Eng Geol 114(3–4):135–143. Accessed 28 Oct 2010

    Google Scholar 

  • Read RS, Langenberg W, Cruden D, Field M, Stewart R, Bland H, Chen Z, Froese CR, Cavers DS, Bidwell AK, Murray C, Anderson WS, Jones A, Chen J, McIntyre D, Kenway D, Bingham DK, Weir-Jones I, Seraphim J, Freeman J, Spratt D, Lamb M, Herd E, Martin D, McLellan P, Pana D (2005) Frank slide a century later: The Turtle mountain monitoring project. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Balkema Publishers, Rotterdam, pp 713–723

    Google Scholar 

  • Reches Z, Lockner DA (1994) Nucleation and growth of faults in brittle rocks. J Geophys Res 99(B9):18159–18173. Accessed 6 Oct 2010

    Google Scholar 

  • Reichenbach P, Cardinali M, De Vita P, Guzzetti F (1998) Regional hydrological thresholds for landslides and floods in the Tiber River Basin (central Italy). Env Geol 35(2):146–159

    Article  Google Scholar 

  • Reichenbach P, Galli MJ, Cardinali M, Guzzetti F, Ardizzone F (2005) Geomorphological mapping to assess landslide risk: concepts, methods and applications in the Umbria Region of Central Italy. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 429–468

    Google Scholar 

  • Reid ME (1994) A pore-pressure diffusion model for estimating landslide-inducing rainfall. J Geol 102(6):709–717. Accessed 20 Oct 2010

    Google Scholar 

  • Reyes CA, Fernandez LC (1996) Monitoring of surface movements in excavated slopes. In: Senneset K (ed) Landslides. Seventh international symposium on landslides. Balkema, Rotterdam, pp 1579–1584

    Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, New York

    Google Scholar 

  • Richards A (2002) Complexity in physical geography. Geography 87(2):99–107

    Google Scholar 

  • Rinaldi M, Casagli N, Dapporto S, Gargini A (2004) Monitoring and modelling of pore water pressure changes and riverbank stability during flow events. Earth Surf Proc Land 29(2):237–254

    Article  Google Scholar 

  • Roch K-H, Chwatal W, Brückl E (2006) Potentials of monitoring rock fall hazards by GPR: considering as example the results of Salzburg. Landslides 3(2):87–94

    Article  Google Scholar 

  • Romang H, Zappa M, Hilker N, Gerber M, Dufour F, Frede V, Bérod D, Oplatka M, Hegg C, Rhyner J (2010) IFKIS-Hydro: an early warning and information system for floods and debris flows. Nat Hazards 2(56):509–527

    Google Scholar 

  • Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2002) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382

    Article  Google Scholar 

  • Rosser NJ, Petley DN (2008) Monitoring and modeling of slope movement on rock cliffs prior to failure. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1265–1271

    Google Scholar 

  • Rosser NJ, Dunning SA, Lim M, Petley DN (2005) Terrestrial laser scanning for quantitative rockfall hazard assessment. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, pp 359–368

    Google Scholar 

  • Ruch C (2009) Georisiken. Aktive Massenbewegungen am Albtrauf. LGRB-Nachrichten 8(2):1–2

    Google Scholar 

  • Saito M (1965) Forecasting the time of occurence of a slope failure. In: Proceedings of the sixth international conference on soil mechanics and foundation engineering. Montreal, Canada, pp 537–541

    Google Scholar 

  • Saito M (1969) Forecasting time of slope failure by tertiary creep. In: Seventh international conference on soil mechanics and foundation engineering. pp 677–683

    Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity–duration thresholds in Japan. Geomorphology 118(1–2):167–175. Accessed 18 Oct 2010

    Google Scholar 

  • Sakai H (2008) A warning system using chemical sensors and telecommunicationtechnologies to protect railroad operation from landslide disaster. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1277–1281

    Google Scholar 

  • Sakai H, Tarumi H (2000) Estimation of the next happening of a landslide by observing the change in groundwater composition. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Eighth international symposium on landslides. T. Telford, London, pp 1289–1294

    Google Scholar 

  • Sakellariou M, Ferentinou M, Charalambous S (2006) An integrated tool for seismic induced landslide hazards mapping. In: Agioutantis Z, Komnitsas K (eds) First European conference on earthquake engineering and seismology. Proceedings of the joint event of 13th ECEE & 30th general Assembly of the ESC. Geneva, Switzerland, pp 1365–1375

    Google Scholar 

  • Santurri L, Carlà R, Fiorucci F, Aiazzi B, Baronti S (2010) Assessment of very high resolution satellite data fusion techniques for landslide recognition. In: Wagner W, Székely B (eds) ISPRS TC VII Symposium—100 years if ISPRS. Vienna, Austria, pp 493–497

    Google Scholar 

  • Sass O, Krautblatter M (2007) Debris flow-dominated and rockfall-dominated talus slopes: Genetic models derived from GPR measurements. Geomorphology 86(1–2):176–192

    Article  Google Scholar 

  • Sass O, Bell R, Glade T (2008) Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 93(1–2):89–103

    Article  Google Scholar 

  • Sato HP, Harp EL (2009) Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 6(2):153–159

    Article  Google Scholar 

  • Schaefer M, Inkpen R (2010) Towards a protocol for laser scanning of rock surfaces. Earth Surf Process Landforms 35:417–423

    Google Scholar 

  • Schmidt J, Turek G, Clark MP, Uddstrom M, Dymond JR (2008) Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions. Nat Hazards Earth Syst Sci 8:349–357

    Google Scholar 

  • Schmutz M, Guerin R, Schott JJ, Maquaire O, Descloitres M, Albouy Y (2000) Geophysical method contribution to the Super Sauze (South France) flowslide knowledge. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and oractice. Eighth international symposium on landslides. T. Telford, London, pp 1321–1326

    Google Scholar 

  • Schneider-Muntau B, Zangerl C (2005) Numerical modelling of a slowly creeping landslide in crystalline rock—a case study. In: Impact of the human activity on the geological environment. Proceedings of the fifth ISRM regional symposium Eurock. Brno, International Society for Rock Mechanics, Czech Republic, pp 535–540

    Google Scholar 

  • Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology 93(1–2):55–73

    Article  Google Scholar 

  • Schrott L, Hördt A, Dikau R (2003) Geophysical applications in geomorphology. Borntraeger, Berlin

    Google Scholar 

  • Schulz WH (2004) Landslides mapped using LIDAR imagery, Seattle, Washington. U.S. Department of the Interior, U.S. Geological Survey

    Google Scholar 

  • Schumm SA (1979) Geomorphic thresholds: The concept and its applications. Trans Inst Brit Geogr NS4:485–515

    Google Scholar 

  • Schuster RL, Highland LM (2007) The third Hans Cloos Lecture. Urban landslides: socioeconomic impacts and overview of mitigative strategies. Bull Eng Geol Environ 66(1):1–27

    Article  Google Scholar 

  • Schuster RL, Wieczorek GF (2002) Landslide triggers and types. In: Rybár J, Stemberk J, Wagner P (eds) Landslides: proceedings of the first European conference on landslides, Taylor & Francis, Prague, June 24–26, 2002, pp 59–78

    Google Scholar 

  • Sekiguchi T, Sato HP (2004) Mapping of micro topography using airborne laser scanning. Landslides 1(3):195–202

    Article  Google Scholar 

  • Sengupta A, Gupta S, Anbarasu K (2009) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat Hazards 52(1):31–42

    Article  Google Scholar 

  • Shi B, Wang B, Li K, Haibo H, Wei G, Piao C (2008a) Distributive monitoring of the slope engineering. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 61–68

    Google Scholar 

  • Shi YX, Zhang Q, Meng XW (2008b) Optical fiber sensing technology used in landslide monitoring. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 921–925

    Google Scholar 

  • Sidle RC, Wu W (1999) Simulating effects of timber harvesting on the temporal and spatial distribution of shallow landslides. Zeitschrift für Geomorphologie 43:15–201

    Google Scholar 

  • Singer J, Schuhbäck S, Wasmeier P, Thuro K, Heunecke O, Wunderlich T, Glabsch J, Festl J (2009) Monitoring the Aggenalm landslide using economic de-formation measurement techniques. Austrian J Earth Sci 102(2):20–34

    Google Scholar 

  • Sirangelo B, Braca G (2004) Identification of hazard conditions for mudflow occurrence by hydrological model: application of FLaIR model to Sarno warning system. Eng Geol 73(3–4):267–276

    Article  Google Scholar 

  • Sitharam TG, Maji VB, Verma AK (2007) Practical equivalent continuum model for simulation of jointed rock mass using FLAC3D. Int J Geomech 7:389

    Google Scholar 

  • Slaymaker O (1991) Mountain geomorphology: A theoretical framework for measurement programmes. Catena 18(5):427–437. Accessed 2 Nov 2010

    Google Scholar 

  • Smith R (1991) The application of cellular automata to the erosion of landforms. Earth Surf Proc Land 16(3):273–281

    Article  Google Scholar 

  • Smith MJ, Chandler J, Rose J (2009) High spatial resolution data acquisition for the geosciences: kite aerial photography. Earth Surf Proc Land 34(1):155–161

    Article  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). National Research Council, Transportation and Research Board Special Report 247, Washington, DC, USA, pp 129–177

    Google Scholar 

  • Sorensen JH (2000) Hazard warning systems: review of 20 years of progress. Nat Hazards Rev 1(2):119–125

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1–2):11–26. Accessed 28 Oct 2010

    Google Scholar 

  • Spickermann A, Schanz T, Datcheva M (2003) Numerical study of a potential landslide in the Swiss Alps. In: Aifantis EC (ed) Fifth euromech solid mechanics conference. Thessaloniki, Greece, pp 17–22

    Google Scholar 

  • Stähli M, Bartelt P (2007) Von der Auslösung zur Massenbewegung. In: Hegg C, Rhyner J (eds) Warnung bei aussergewöhnlichen Naturereignissen. Forum für Wissen. pp 33–38

    Google Scholar 

  • Stark TD, Choi H (2008) Slope inclinometers for landslides. Landslides 5(3):339–350

    Article  Google Scholar 

  • Stead D, Eberhardt E, Coggan JS (2006) Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol 83(1–3):217–235. Accessed 28 Oct 2010

    Google Scholar 

  • Strenger MP (2009) Niederschlagsschwellenwerte bei der Auslösung von Muren. University Vienna, Austria

    Google Scholar 

  • Supper R, Römer A (2003) New achievments in development of a high-speed geoelectrical monitoring system for landslide monitoring. In: Proceedings of the environmental and engineering geophysical society. Prague, Czech Republic, pp 1–6

    Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Env Geol 45(5):665–679

    Article  Google Scholar 

  • Tangestani MH (2003) Landslide susceptibility mapping using the fuzzy gamma operation in a GIS, Kakan catchment area, Iran. In: Disaster Management. Proceeding of the Map India 2003 conference. New Delhi, India, pp 107–134

    Google Scholar 

  • Tarantino C, Blonda P, Pasquariello G (2004) Application of change detection techniques for monitoring man-induced landslide causal factors. In: Geoscience and remote sensing. Proceedings of the IGARSS symposium. pp 1103–1106

    Google Scholar 

  • Tarboton D (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):11

    Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Teoman MB, Topal T, Isik NS (2004) Assessment of slope stability in Ankara clay: a case study along E90 highway. Env Geol 45(7):963–977

    Article  Google Scholar 

  • Terlien MT (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Env Geol 35(2):124–130

    Article  Google Scholar 

  • Terlien MTJ, Van Westen CJ, Van Asch T (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 57–77

    Google Scholar 

  • Terranova O, Antronico L, Gulla G (2007) Landslide triggering scenarios in homogeneous geological contexts: The area surrounding Acri (Calabria, Italy). Geomorphology 87(4):250–267

    Article  Google Scholar 

  • Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke, Vienna

    Google Scholar 

  • Terzaghi K (1950) Mechanisms of landslides. In: Paige S (ed) Application of geology to engineering practice. Geological Society of America, Berkley, pp 83–123

    Google Scholar 

  • Terzaghi K (1961) Die Bodenmechanik in der Baupraxis. Springer, Berlin

    Book  Google Scholar 

  • Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • Thiebes B (2006) Räumliche Gefährdungsmodellierung flachgründiger Hangrutschungen—GIS gestützte Analyse an der Schwäbischen Alb. University of Bonn, Germany

    Google Scholar 

  • Thiebes B, Bell R, Glade T (2010) Bewegungsanalyse-Frühwarnmodell. In: Bell R, Pohl J, Glade T, Mayer J, Greiving S (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 150–151

    Google Scholar 

  • Thuro K, Wunderlich T, Heunecke O, Singer J, Schuhbäck S, Wasmeier P, Glabsch J, Festl J (2009) Low cost 3D early warning system for unstable alpine slopes—the Aggenalm Landslide monitoring system. Geomech Tunn 2(3):221–237

    Article  Google Scholar 

  • Tianchi L (1994) Landslide disasters and human responses in China. Mountain Res Develop 4(14):341–346. Accessed 16 Sep 2010

    Google Scholar 

  • Tiranti D, Rabuffetti D (2010) Estimation of rainfall thresholds triggering shallow landslides for an operational warning system implementation. Landslides 4(7):471–481

    Article  Google Scholar 

  • Tohari A, Nishigaki M, Komatsu M, Kankam-Yeboah K, Daimuru S (2004) Field monitoring of hydrological response of a residual soil slope to rainfall. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 749–754

    Google Scholar 

  • Topal T, Akin M (2008) Investigation of a landslide along a natural gas pipeline (Karacabey-Turkey). In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1647–1652

    Google Scholar 

  • Tropeano D, Turconi L (2004) Using historical documents for landslide, debris flow and stream flood prevention. Applications in Northern Italy. Nat Hazards 31(3):663–679

    Article  Google Scholar 

  • Turcotte DL, Malamud BD (2004) Landslides, forest fires, and earthquakes: examples of self-organized critical behavior. Phys A Statist Mech Appl 340(4):580–589

    Article  Google Scholar 

  • Turner AK, McGuffey VC (1996) Organization of investigation process. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). National Research Council, Transportation and Research Board Special Report 247, Washington, pp 121–128

    Google Scholar 

  • Twigg J (2003) The human factor in early warning: risk perception and appropriate communications. In: Zschau J, Küppers AN (eds) Early warning systems for natural disaster reduction. Springer, Berlin, pp 19–27

    Google Scholar 

  • Uchida T, Kosugi K, Mizuyama T (2001) Effects of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments. Hydrol Process 15(11):2151–2174

    Article  Google Scholar 

  • UNISDR (2004a) Early Warning Systems. In: Living with Risk. UN/ISDR, Geneva, Switzerland, pp 358–383

    Google Scholar 

  • UNISDR (2004b) ISDR: Platform for the Promotion of Early Warning. http://www.unisdr.org/ppew/whats-ew/ew-made.htm. Accessed 19 Nov 2010

  • UNISDR (2006a) Compendium of early warning systems. UN/ISDR, Bonn, Germany

    Google Scholar 

  • UNISDR (2006b) Global survey of early warning systems. UN/ISDR

    Google Scholar 

  • UNISDR (2009) ISDR?: Terminology. http://www.unisdr.org/eng/library/lib-terminology-eng%20home.htm. Accessed 15 Sep 2010

  • US Army Corps of Engineers (2003) Slope stabiliy. Washington, D.C., USA

    Google Scholar 

  • USGS (2006) Landslide Hazards in the Seattle, Washington, Area. Department of the Interior and U.S. Geological Survey

    Google Scholar 

  • Vallone P, Giammarinaro MS, Crosetto M, Agudo M, Biescas E (2008) Ground motion phenomena in Caltanissetta (Italy) investigated by InSAR and geological data integration. Eng Geol 98(3–4):144–155

    Article  Google Scholar 

  • Van Westen CJ (2007) Mapping landslides: recent developments in the use of digital information. In: Turner A, Schuster RL (eds) Landslides and society? Proceedings of the first North American conference on landslides, Vail, Colorado, USA, June 3–8, 2007. Association of Environmental and Engineering Geologists, Vail Colorado, USA, pp 221–238

    Google Scholar 

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geologische Rundschau 86(2):404–414

    Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: A review of principles and practice. UNESCP Press, Paris

    Google Scholar 

  • Vlcko J (2004) Extremely slow slope movements influencing the stability of Spis Castle, UNESCO site. Landslides 1(1):67–71

    Article  Google Scholar 

  • Voight B (1988) A method for prediction of volcanic eruptions. Nature 332(6160):125–130. Accessed 6 Oct 2010

    Google Scholar 

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243(4888):200

    Google Scholar 

  • Volkmann G, Schubert W (2005) The use of horizontal inclinometers for the optimization of the rock mass-support interaction. In: Erdem Y, Solak T (eds) Underground space use-analysis of the past and lessons for the future. Taylor & Francis, Routledge, pp 967–972

    Google Scholar 

  • Von Elverfeldt K (2010) Systemtheorie in der Geomorphologie. Problemfelder, erkenntnistheoretische Konsequenzen und praktische Implikationen. University of Vienna, Austria

    Google Scholar 

  • Walstra J, Chandler JH, Dixon N, Dijkstra TA (2004) Extracting landslide movements from historical aerial photographs. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: Evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 843–850

    Google Scholar 

  • Walter M, Joswig M (2009) Seismic characterization of slope dynamics caused by soft rock-landslides: The Super-Sauze case study. In: Malet J-P, Remaître A, Bogaard T (eds) Landslide processes: from geomorphic mapping to dynamic modelling. Proceedings of the landslide processes conference. CERG Editions, Strasbourg, France, pp 215–220

    Google Scholar 

  • Wang B-J, Li K, Shi B, Wei G-Q (2008a) Test on application of distributed fiber optic sensing technique into soil slope monitoring. Landslides 6(1):61–68

    Google Scholar 

  • Wang FW, Wang G, Zhang YM, Huo ZT, Peng XM, Araiba K, Tekeuchi A (2008b) Displacement monitoring on Shuping landslide in the three Gorges Dam Reservoir area, China from August 2004 to July 2007. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1321–1327

    Google Scholar 

  • Wang H, Harvey AM, Xie S, Kuang M, Chen Z (2008c) Tributary-junction fans of China’s Yangtze Three-Gorges valley: Morphological implications. Geomorphology 100(1–2):131–139

    Google Scholar 

  • Wang F, Zhang Y, Huo Z, Peng X (2009) Monitoring on shuping landslide in the three Gorges Dam Reservoir, China. In: Wang F, Li T (eds) Landslide disaster mitigation in three gorges reservoir, China. Springer, Berlin, pp 257–273

    Google Scholar 

  • Wasowski J, Lollino P, Limoni PP, Del Gaudio V, Lollino G, Gostelow P (2004) Towards an integrated field and EO-based approach for monitoring peri-urban slope instability. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 809–816

    Google Scholar 

  • Watson AD, Moore DP, Stewart TW (2004) Temperature influence on rock slope movements at Checkerboard Creek. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 1293–1298

    Google Scholar 

  • Webster TL, Dias G (2006) An automated GIS procedure for comparing GPS and proximal LiDAR elevations. Comput Geosci 32(6):713–726

    Article  Google Scholar 

  • White G, Haas JE (1975) Assessment of research on natural hazards. MIT Press, Cambridge

    Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows on the central Santa Cruz mountains, California. In: Costa JE, Wieczorek GF (eds) Debris flows/avalanches: process, recognition, and mitigation. Reviews in Engineering Geology 7. Geological Society of America, Boulder, pp 93–104

    Google Scholar 

  • Wieczorek GF (1996) Landslide triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). National Research Council, Transportation and Research Board Special Report 247, Washington, D.C., USA, pp 76–90

    Google Scholar 

  • Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 325–362

    Google Scholar 

  • Wieczorek GF, Guzzetti F (1999) A review of rainfall thresholds for triggering landslides. In: Claps P, Siccardi F (eds) Mediterranean storms. Proceedings Plinius conference ’99. Maratea, Italy, pp 407–414

    Google Scholar 

  • Wieczorek GF, Gori PL, Highland LM (2005) Reducing landslide hazards and risk in the United States: The role of the US geological survey. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 351–375

    Google Scholar 

  • Wienhöfer J, Lindenmaier (2009) Temporal variability of a slow-moving landslide: the Heumöser case study in Vorarlberg, Austria. In: Malet JP, Remaître A, Bogaard T (eds) Landslide processes: from geomorphological mapping to dynamic modelling. Proceedings of the international conference on landslide processes. CERG Editions, Strasbourg, pp 221–226

    Google Scholar 

  • Wilkinson PL, Brooks SM, Anderson MG (2000) Design and application of an automated non-circular slip surface search within a combined hydrology and stability model (CHASM). Hydrol Process 14(11–12):2003–2017

    Article  Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM (2002a) An integrated hydrological model for rain-induced landslide prediction. Earth Surf Proc Land 27(12):1285–1297

    Article  Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM, Renaud JP (2002b) Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Environ Model Softw 17(4):333–344

    Article  Google Scholar 

  • Willenberg H, Spillmann T, Eberhardt E, Evans KF, Loew H, Maurer H (2002) Multidisciplinary monitoring of progressive failure process in brittle rock slopes—concepts and system design. In: Rybár J, Stemberk J, Wagner P (eds) First European conference on landslides. Balkema Publishers, Prague, pp 477–483

    Google Scholar 

  • Willenberg H, Evans KF, Eberhardt E, Loew S, Spillmann T, Maurer HR (2004) Geological, geophysical and geotechnical investigations into the internal structure and kinematics of an unstable, complex sliding mass in crystalline rock. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 489–494

    Google Scholar 

  • Willenberg H, Loew S, Eberhardt E, Evans K, Spillmann T, Heincke B, Maurer H, Green A (2008) Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): Part I—Internal structure from integrated geological and geophysical investigations. Eng Geol 101(1–2):1–14

    Article  Google Scholar 

  • Wilson RC (1989) Rainstorms, pore pressures, and debris flows: A theoretical framework. In: Sadler PM, Morton DM (eds) Landslides in semi-arid environment. Inland Geological Society, Riverside, pp 101–117

    Google Scholar 

  • Wilson RC (2005) The rise and fall of a Debris-Flow warning system for the San Francisco Bay Region, California. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 493–516

    Google Scholar 

  • Wilson RC, Wieczorek GF (1995) Rainfall thresholds for the initiation of debris flows at La Honda, California. Environ Eng Geosci 1(1):11–27. Accessed 18 Oct 2010

    Google Scholar 

  • Wilson RC, Mark RK, Barbato G (1993) Operation of a real-time warning system for debris flows in the San Francisco Bay area, California. In: Shen HW, Su ST, Wen F (eds) Proceedings of the 1993 conference on hydraulic engineering, pp 1908–1913

    Google Scholar 

  • Wong HN, Ho KKS (2000) Learning from slope failures in Hong Kong. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Proceedings of the eighth international symposium on landslides. Thomas Telford, London

    Google Scholar 

  • Wu TH (1996) Soil strength properties and their measurement. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). National Research Council, Transportation and Research Board Special Report 247, Washington, D.C., USA, pp 319–336

    Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31(8):2097–2110. Accessed 26 Oct 2010

    Google Scholar 

  • Wu W, Sidle RC (1997) Application of a distributed shallow landslide analysis model (dSLAM) to managed forested catchments in Oregon, USA. In: Human impact on erosion and sedimentation. Proceedings of the Rabat Symposium. IAHS Publication 245, pp 213–222

    Google Scholar 

  • Wu MJ, Li ZC, Yuan PJ, Jiang YH (2008) Twenty years of safety monitoring for the landslide of Hancheng PowerStation. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1335–1341

    Google Scholar 

  • Wu YP, Yin KL, Jiang W (2009) Early warning of landslide risk in Yongjia County, Zhejiang Province. J Nat Disast 18(2):124–130

    Google Scholar 

  • Xie M, Esaki T, Zhou G (2004) GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Nat Hazards 33(2):265–282. Accessed 26 Oct 2010

    Google Scholar 

  • Xu Q, Zeng Y (2009) Research on acceleration variation characteristics of creep landslide and early-warning prediction indicator of critical sliding. Yanshilixue Yu Gongcheng Xuebao/Chinese J Rock Mech Eng 28(6):1099–1106

    Google Scholar 

  • Yagoda-Biran G, Hatzor YH, Amit R, Katz O (2010) Constraining regional paleo peak ground acceleration from back analysis of prehistoric landslides: example from Sea of Galilee, Dead Sea transform. Tectonophysics 490(1–2):81–92. Accessed 28 Oct 2010

    Google Scholar 

  • Yang X, Chen L (2010) Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. Int J Appl Earth Observ Geoinform 6(12):487–495. Accessed 16 Sep 2010

    Google Scholar 

  • Ye Y, Mu Q, Zhang C (2009) Tunnel construction multivariate information forewarning and safety management system research. Yanshilixue Yu Gongcheng Xuebao/Chinese J Rock Mech Eng 28(5):900–907

    Google Scholar 

  • Yin Y (2009) Landslide mitigation strategy and implementation in China. In: Sassa K, Canuti P (eds) Landslides-disaster risk reduction. Springer, Berlin, pp 482–484

    Google Scholar 

  • Yin JH, Zhu HH, Jin W (2008) Monitoring of soil nailed slopes and dams using innovative technologies. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1361–1366

    Google Scholar 

  • Yin Y, Wang H, Gao Y, Li X (2010a) Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 7(3):339–349

    Article  Google Scholar 

  • Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010b) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7(3):359–365

    Article  Google Scholar 

  • Yu YF, Lam J, Siu CK, Pun WK (2004) Recent advance in landslip warning system. In: Recent advances in geotechnical engineering. Proceedings of the twenty-fourth geotechnical division Annual Seminar. Institution of Engineers, Hong Kong, pp 139–147

    Google Scholar 

  • Zaitchik BF, van Es HM (2003) Applying a GIS slope-stability model to site-specific landslide prevention in Honduras. J Soil Water Conserv 58(1):45–53

    Google Scholar 

  • Zhang Q, Wang L, Zhang XY, Huang GW, Ding XL, Dai WJ, Yang WT (2008) Application of multi-antenna GPS technique in the stability monitoring of roadside slopes. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an, pp 1367–1372

    Google Scholar 

  • Zhao XB, Zhao J, Cai JG, Hefny AM (2008) UDEC modelling on wave propagation across fractured rock masses. Comput Geotech 35(1):97–104

    Article  Google Scholar 

  • Zhong L, Xiao S, Zhou Y (2009) Research on the early warning and forecast system of geologic hazards in Hubei Province based on WEBGIS. In: First international workshop on education technology and computer science. Wuhan, Hubei, China, pp 602–606

    Google Scholar 

  • Zhou PG, Chen HQ (2005) Research on geologic hazard risk management in china based on geologic hazard survey and zoning. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis, Vancouver, pp 54–60

    Google Scholar 

  • Zschau J, Küppers AN (2003) Early warning systems for natural disaster reduction. Springer, Berlin

    Google Scholar 

  • Zschau J, Merz B, Plate EJ, Goldammer JG (2001) Vorhersage und Frühwarnung. In: Plate EJ, Merz B (eds) Naturkatastrophen. Schweizerbart’Sche Verlagsbuchhandlung, pp 273–350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thiebes, B. (2012). Theoretical Background. In: Landslide Analysis and Early Warning Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27526-5_2

Download citation

Publish with us

Policies and ethics