Skip to main content

TOF Cameras for Architectural Surveys

  • Chapter
  • First Online:
Book cover TOF Range-Imaging Cameras

Abstract

Digital photogrammetry developments and the massive use of LiDAR technology have led to a radical change in metric survey approaches for the documentation of Cultural Heritage. In particular, a rapid change has been taken place from 2D representations, which were always considered the only way of obtaining architectural knowledge, to 3D geometric and photorealistic representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Albota, R.M. Heinrichs, D.G. Kocher, D.G. Fouche, B.E. Player, M.E. Obrien, G.F. Aull, J.J. Zayhowski, J. Mooney, B.C. Willard, R.R. Carlson, Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Appl. Opt. 41, 7671–7678 (2002)

    Article  Google Scholar 

  2. D. Anderson, H. Herman, A. Kelly, Experimental Characterization of commercial flash ladar devices. In: Proceedings of International Conference on Sensing Technologies, Palmerston North, New Zealand, (2005)

    Google Scholar 

  3. E. Baltsavias, Multiphoto geometrically constrained matching. Ph.D. Dissertation, ETH Zurich, Switzerland, ISBN 3-906513-01-7 (1991)

    Google Scholar 

  4. N. Blanc, T. Oggier, G. Gruener, J. Weingarten, A. Codourey, P. Seitz, Miniaturized smart cameras for 3D-imaging in real-time, in Proceedings of IEEE Sensors, (Vienna, Austria, 2004), pp. 471–474

    Google Scholar 

  5. J. Böhm, Terrestrial laser scanning—a supplementary approach for 3D documentation and animation, in Photogrammetric Week ‘05, ed. by Fritsch. (Wichmann, Heidelberg, 2005), pp. 263–271

    Google Scholar 

  6. C. Bonfanti, F. Chiabrando, A. Spanò, High accuracy images and range based acquiring for artistic handworks 3D models. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XXXVIII/5, 109–114 (2010)

    Google Scholar 

  7. B. Büttgen, T. Oggier, M. Lehmann, CCD/CMOS lock-in pixel for range imaging: challenges, limitations and state-of-the-art, in Proceedings of 1st Range Imaging Research Day (Zurich, Switzerland, 2005), pp. 21–32

    Google Scholar 

  8. J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–714 (1986)

    Article  Google Scholar 

  9. F. Chiabrando, R. Chiabrando, D. Piatti, F. Rinaudo, Sensors for 3D imaging: metric evaluation and calibration of a CCD/CMOS Time-Of-Flight camera. Sensors 9, 10080–10096 (2009)

    Article  Google Scholar 

  10. W.J. Christmas, J. Kittler, M. Petrou, Structural matching in computer vision using probabilistic relaxation. PAMI 17(8), 749–764 (1995)

    Article  Google Scholar 

  11. B. Dellen, G. Alenyà, S. Foix, C. Torras, 3D object reconstruction from Swissranger sensors data using a spring-mass model, in Proceedings 4th International Conference Computer Vision Theory and Application, vol. 2 (Lisbon, Portugal 2009), pp. 368–372

    Google Scholar 

  12. S. Foix, G. Alenyà, J. Andrade-Cetto, C. Torras Object modeling using a TOF camera under an uncertainty reduction approach, in Proceedings IEEE International Conference on Robotics and Automation (Anchorage, AK, 2010), pp. 1306–1312

    Google Scholar 

  13. S. Gehrke, K. Morin, M. Downey, N. Boehrer, T. Fuchs, Semi-global matching: an alternative to LiDAR for DSM generation? International archives of photogrammetry and remote sensing and spatial information sciences—canadian geomatics conference XXXVIII(1), (2010)

    Google Scholar 

  14. V.H. Hiep, R. Keriven, P. Labatut, J.-P. Pons, Towards high resolution multi-view stereo, Proceedings computer vision and pattern recognition, pp. 1430–1437 (2009)

    Google Scholar 

  15. T. Kahlmann, F. Remondino, H. Ingensand, Calibration for increased accuracy of the range imaging camera Swiss ranger, Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XXXVI, 136–141 (2006)

    Google Scholar 

  16. T. Kahlmann, H. Ingensand, Calibration and development for increased accuracy of 3D range imaging cameras. J. Appl. Geodesy 2(1), 1–11 (2008)

    Google Scholar 

  17. W. Karel, S. Ghuffar, N. Pfeifer, Quantifying the distortion of distance observations caused by scattering in Time-Of-Flight range cameras. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 38(5), 316–321 (2010)

    Google Scholar 

  18. T. Kavli, T. Kirkhus, J. Thielmann, B. Jagielski, Modeling and compensating measurement errors caused by scattering Time–Of-Flight cameras. Proc. SPIE 7066, 706604-1 - 706604-10 (2008)

    Google Scholar 

  19. R. Lange, Time-Of-Flight range imaging with a custom solid-state image sensor. Proc. SPIE 3823 180–191 (1999)

    Google Scholar 

  20. R. Lange, P. Seitz, Solid-state Time-Of-Flight range camera. IEEE J. Quantum Electron. 37(3), 390–397 (2001)

    Article  Google Scholar 

  21. R. Lewis, C. Sequin, Generation of 3D building models from 2D architectural plans. Comput. Aided Des. 30(10), 765–779 (1998)

    Google Scholar 

  22. D.D. Lichti, , C. Kim, S. Jamtsho, An integrated bundle adjustment approach to range-camera geometric self-calibration. ISPRS J. Photogramm. Remote Sens. 65(4), 360–368 (2010).

    Google Scholar 

  23. D. Lichti, Self-Calibration of a 3D Range Camera 2008. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XXXVII, 927–932 (2008)

    Google Scholar 

  24. D.D. Lichti, C. Kim, A comparison of three geometric self-calibration methods for range cameras. J. Remote Sens. 3, 1014–1028 (2011)

    Article  Google Scholar 

  25. M. Lindner, A. Kolb, Lateral and depth calibration of PMD-distance sensors. Proc. ISVC 2 524–533 (2006)

    Google Scholar 

  26. A. Lingua, F. Rinaudo, Aerial triangulation data acquisition using a low cost digital photogrammetric system. Int. Arch. Photogram. Remote Sens XXXIII/B2, 449–454, ISSN: 0256-184 (2000)

    Google Scholar 

  27. A. Lingua, D. Marenchino, F. Nex, Performance analysis of the SIFT operator for automatic feature extraction and matching in photogrammetric applications. Sensors 9(5), 3745–3766, ISSN: 1424-8220, (2009) doi: 10.3390/s90503745

  28. M. Lo Turco, M. Sanna, Digital modelling for architectural reconstruction. The case study of the Chiesa Confraternita della Misericordia in Turin. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XXXVIII-3/W8, 101–106 (2009)

    Google Scholar 

  29. J. Mure-Dubois, H. Hugli, Optimized scattering compensation for Time-Of-Flight camera. Proceeding two- and three-dimensional methods for inspection and metrology V, SPIE 6762, 67620H-1–67620H-10 (2007)

    Google Scholar 

  30. F. Nex, Multi-image matching and LiDAR data new integration approach. Ph.D. Thesis, Politiecnico di Torino, Torino (2010)

    Google Scholar 

  31. F. Nex, F. Rinaudo, New integration approach of photogrammetric and LIDAR techninques for architectural surveys. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XXXVIII-3/W8, 12–17, ISSN: 0256-1840, (2009)

    Google Scholar 

  32. D. Piatti, Time-Of-Flight cameras: tests, calibration and multi-frame registration for automatic 3D object reconstruction. Ph.D. Thesis, Politecnico di Torino, Torino (2011)

    Google Scholar 

  33. M. Pierrot-Deseilligny, I. Cléry, APERO, an open source bundle adjustment software for automatic calibration and orientation of a set of images. Int. Arch. Photogram. Remote Sens. XXXVIII-5/W16, (2011)

    Google Scholar 

  34. H. Rapp, M. Frank, F.A. Hamprecht, B. Jähne, A theoretical and experimental investigation of the systematic errors and statistical uncertainties of Time-Of-Flight-cameras. IJISTA 2008(5), 402–413 (2008)

    Article  Google Scholar 

  35. F. Remondino, S. El-Hakim, Image-based 3D modeling: a review. Photogram. Rec. 21(115), 269–291 (2006)

    Article  Google Scholar 

  36. F. Remondino, S. El-Hakim, A. Gruen, L. Zhang, Turning images into 3D models. IEEE Signal Process. Mag. 25(4), 55–64 (2008)

    Article  Google Scholar 

  37. P.J. Rousseeuw, A.M. Leroy, Robust regression and outlier detection; Wiley series in probability and mathematical statistics (Wiley, New York, 1987)

    Book  Google Scholar 

  38. M. Scherer, The 3D-TOF-camera as an innovative and low-cost tool for recording, surveying and visualization a short draft and some first experiences. Int. Arch. Photogram. Remote Sens Spat Inf Sci XXXVIII-3/W8, (2009)

    Google Scholar 

  39. O. Steiger, J. Felder, S. Weiss, Calibration of Time-Of-Flight range imaging cameras, in Proceedings of the 15th IEEE ICIP, San Diego, CA, USA, 1968–1971 (2008)

    Google Scholar 

  40. R. Wallis, An approach to the space variant restoration and enhancement of images, In: Proceedings of Symposium on Current Mathematical Problems in Image Science. Monterey CA, USA, 329–340 (1976)

    Google Scholar 

  41. C.A. Weyer, K. Bae, K. Lim, D. Lichti, Extensive metric performance evaluation of a 3D range camera. Int. Soc. Photogram. Remote Sens. XXXVII, 939–944 (2008)

    Google Scholar 

  42. L. Zhang, Automatic digital surface model (DSM) generation from linear array images. Thesis Diss. ETH No. 16078, Technische Wissenschaften ETH Zurich, IGPMitteilung N. 90 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiberto Chiabrando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiabrando, F., Rinaudo, F. (2013). TOF Cameras for Architectural Surveys. In: Remondino, F., Stoppa, D. (eds) TOF Range-Imaging Cameras. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27523-4_7

Download citation

Publish with us

Policies and ethics