Skip to main content

TOF Cameras in Ambient Assisted Living Applications

  • Chapter
  • First Online:
TOF Range-Imaging Cameras

Abstract

In the area of smart environments, vision-based sensing technologies are increasingly investigated to support aging-in-place within the context of Ambient Assisted Living (AAL) research. Range Imaging (RIM) constitutes an important technological innovation in the field of camera-based solutions. In fact, fusing together distance measurements with image processing capabilities, RIM overcomes limitations of passive vision traditionally pursued by camera-based solutions. This chapter aims to highlight the benefits of RIM technologies, in particular Time-Of-Flight (TOF)-based, in AAL applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Foldi, L. Kaplan, J. Ly, O. Nikelshpur, M. Lucy, B. Jeffrey, ADL functions and relationship to cognitive status. Alzheimer’s Dement. J. Alzheimer’s Assoc. 7(4), S244 (2011)

    Article  Google Scholar 

  2. N. Shah, M. Kapuria, K. Newman, in Embedded activity monitoring methods. Activity Recognition in Pervasive Intelligent Environments, vol 4(13) (Atlantis Press, Amsterdam, 2011), pp. 291–311

    Google Scholar 

  3. B. Kröse, T. Oosterhout, T. Kasteren, Activity Monitoring Systems in Health Care, in Computer Analysis of Human Behavior, vol. 12 (Springer, London, 2011), pp. 325–346

    Google Scholar 

  4. A. Agarwal, B. Triggs, Recovering 3D human pose from monocular images. IEEE Trans. PAMI 28(1), 44–58 (2006)

    Article  Google Scholar 

  5. A. Fossati, M. Dimitrijevic, V. Lepetit, P. Fua, From canonical poses to 3D motion capture using a single camera. IEEE Trans. PAMI 32(7), 1165–1181 (2010)

    Article  Google Scholar 

  6. S.N. Lim, A. Mittal, L.S. Davis, N. Paragios, Fast illumination invariant background subtraction using two views: error analysis, sensor placement and applications. Proc. Comput. Vis. Pattern Recogn. 1, 1071–1078 (2005)

    Google Scholar 

  7. R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  8. V. Ganapathi, C. Plagemann, S. Thrun, D. Koller, Real time motion capture using a single Time-Of-Flight camera, in Proceedings of CVPR, pp. 755–762 2010

    Google Scholar 

  9. W. Li, Z. Zhang, Z. Liu, Action recognition based on a bag of 3D points, in Proceedings of CVPRW, pp. 9–14 2010

    Google Scholar 

  10. C. Plagemann, V. Ganapathi, D. Koller, S. Thrun, Real-time identification and localization of body parts from depth images, in Proceedings of ICRA, pp. 3108–3113 2010

    Google Scholar 

  11. S. Oprisescu, C. Burlacu, V. Buzuloiu, Action recognition using time of flight cameras, in Proceedings of COMM, pp. 153–156 2010

    Google Scholar 

  12. C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, J. Meunier, Fall detection from depth map video sequences. Lect. Notes Comput. Sci. 6719(2011), 121–128 (2011)

    Article  Google Scholar 

  13. D. Falie, M. Ichim, Sleep monitoring and sleep apnea event detection using a 3D camera, in Proceedings of 8th IEEE International Conference on Communications (COMM), pp. 177–180 2010

    Google Scholar 

  14. M. Grassi, A. Lombardi, G. Rescio, M. Ferri, P. Malcovati, A. Leone, G. Diraco, P. Siciliano, M. Malfatti, L. Gonzo, An integrated system for people fall-detection with data fusion capabilities based on 3D TOF camera and wireless accelerometer, in Proceedings of IEEE Sensors, pp. 1016–1019 2010

    Google Scholar 

  15. G. Diraco, A. Leone, P. Siciliano, Geodesic-based human posture analysis by using a single 3D TOF camera, in Proceedings of IEEE International Symposium on Industrial Electronics (ISIE), pp. 1329–1334 2011

    Google Scholar 

  16. A. Leone, G. Diraco, P. Siciliano, Detecting falls with 3D range camera in ambient assisted living applications: a preliminary study. Med. Eng. Phys. J. 33(6), 770–781 (2011)

    Article  Google Scholar 

  17. www.xbox.com/Kinect

  18. A. Kolb, E. Barth, R. Koch, TOF-sensors: new dimensions for realism and interactivity, in Proceedings of Computer Vision and Pattern Recognition Workshops, pp. 1–6 2008

    Google Scholar 

  19. S. Foix, G. Alenyà, C. Torras, Lock-in Time-Of-Flight (TOF) cameras: a survey. IEEE Sens. J. 11(9), 1917–1926 (2011)

    Article  Google Scholar 

  20. S.A. Guomundsson, H. Aanaes, R. Larsen, Environmental effects on measurement uncertainties of Time-Of-Flight cameras. Proc. IEEE ISSCS 1, 1–4 (2007)

    Google Scholar 

  21. D. Lee, Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)

    Article  Google Scholar 

  22. N. Noury, P. Rumeau, A.K. Bourke, G. ÓLaighin, J.E. Lundy, A proposal for the classification and evaluation of fall detectors. J. IRBM 29(6), 340–349 (2008)

    Google Scholar 

  23. M.C. Chung, K.J. McKee, C. Austin, H. Barkby, H. Brown, S. Cash, J. Ellingford, L. Hanger, T. Pais, Posttraumatic stress disorder in older people after a fall. Int. J. Geriatr. Psychiatry 24(9), 955–964 (2009)

    Article  Google Scholar 

  24. S. Sadigh, A. Reimers, R. Andersson, L. Laflamme, Falls and fall-related injuries among the elderly: a survey of residential-care facilities in a Swedish municipality. J. Commun. Health 29, 129–140 (2004)

    Article  Google Scholar 

  25. A. Shumway-Cook, M.A. Ciol, J. Hoffman, B.J. Dudgeon, K. Yorkston, L. Chan, Falls in the medicare population: incidence, associated factors, and impact on health care. J. Phys. Ther. 89(4), 324–332 (2009)

    Article  Google Scholar 

  26. S.R. Lord, C. Sherrington, H.B. Menz, Falls in Older People. Risk Factors and Strategies for Prevention (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  27. S. Elliott, J. Painter, S. Hudson, Living alone and fall risk factors in community-dwelling middle age and older adults. J. Commun. Health 34, 301–310 (2009)

    Article  Google Scholar 

  28. M. Shaou-Gang, S. Fu-Chiau, H. Chia-Yuan, A smart vision-based human fall detection system for telehealth applications, in Proceedings of the 3rd Telehealth Conference, pp. 7–12 2007

    Google Scholar 

  29. B. Jansen, R. Deklerck, Context aware inactivity recognition for visual fall detection, in Proceedings of IEEE Pervasive Health Conference, pp. 1–4 2006

    Google Scholar 

  30. R. Cucchiara, A. Prati, R. Vezzani, A multi-camera vision system for fall detection and alarm generation. Expert Syst. J. 24(5), 334–345 (2007)

    Article  Google Scholar 

  31. http://www.mesa-imaging.ch

  32. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  Google Scholar 

  33. http://www.xsens.com

  34. C. Fabien, B. Deepayan, A. Charith, S.H. Mark, Video based technology for ambient assisted living: a review of the literature. Environments 3, 253–269 (2011). IOS Press

    Google Scholar 

  35. D.S. Lee, Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)

    Article  Google Scholar 

  36. C. Stauffer, W. Grimson, Adaptive background mixture models for real-time tracking, in Proceedings of IEEE Computer Vision and Pattern Recognition Conference, pp. 246–252 1999

    Google Scholar 

  37. http://sourceforge.net/projects/opencvlibrary

  38. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Google Scholar 

  39. M. Isard, A. Blake, CONDENSATION—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)

    Article  Google Scholar 

  40. N. Noury, A. Fleury, P. Rumeau, A.K. Bourke, G.O. Laighin, V. Rialle, J.E. Lundy, Fall detection—principles and methods, in Proceedings of the 29th IEEE EMBS, pp. 1663–1666 2007

    Google Scholar 

  41. J. Parkkari, P. Kannus, M. Palvanen, A. Natri, J. Vainio, H. Aho et al., Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif. Tissue Int. 65, 183–187 (1999)

    Article  Google Scholar 

  42. T.B. Moeslund, A. Hilton, V. Kruger, A survey of advances in vision-based human motion capture and analysis. J. CVIU 104(2–3), 90–126 (2006)

    Google Scholar 

  43. J. Deutscher, I. Reid, Articulated body motion capture by stochastic search. Int. J. Comput. Vis. 61(2), 185–205 (2005)

    Article  Google Scholar 

  44. G. Mori, J. Malik, Recovering 3D human body configurations using shape contexts. IEEE Trans. PAMI 28(7), 1052–1061 (2006)

    Article  Google Scholar 

  45. R. Navaratnam, A.W. Fitzgibbon, R. Cipolla, Semi-supervised learning of joint density models for human pose estimation, in Proceedings of BMVC, vol. 2, pp. 679–688 2006

    Google Scholar 

  46. K. Mikolajczyk, D. Schmid, A. Zisserman, Human detection based on a probabilistic assembly of robust part detectors, in Proceedings of European Conference on Computer Vision (ECCV), pp. 69–81 2004

    Google Scholar 

  47. C. Sminchisescu, A. Kanaujia, Z. Li, D. Metaxas, Discriminative density propagation for 3D human motion estimation. Proc. Comput. Vis. Pattern Recogn. 1, 390–397 (2005)

    Google Scholar 

  48. L. Ren, G. Shakhnarovich, J.K. Hodgins, H. Pfister, P.A. Viola, Learning silhouette features for control of human motion. J. ACM TOG 24(4), 1303–1331 (2005)

    Article  Google Scholar 

  49. Q. Delamarre, O. Faugeras, 3D articulated models and multi view tracking with physical forces. J. CVIU 81(3), 328–357 (2001)

    Google Scholar 

  50. A. Leone, G. Diraco, P. Siciliano, Topological and volumetric posture recognition with active vision sensor in AAL contexts, in Proceedings of 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 110–114 2011

    Google Scholar 

  51. N. Werghi, Y. Xiao, J.P. Siebert, A functional-based segmentation of human body scans in arbitrary postures. J. T-SMCB 36(1), 153–165 (2006)

    Google Scholar 

  52. G. Reeb, Sur les points singuliers d’une forme de Pfaff complétement intégrable ou d’une fonction numérique. C.R. Acad. Sci. Paris 222, 847–849 (1946)

    Google Scholar 

  53. A. Verroust, F. Lazarus, Extracting skeletal curves from 3-D scattered data. Vis. Comput. 16(1), 15–25 (2000)

    Article  Google Scholar 

  54. C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  55. I. Steinwart, A. Christmann, Support vector machines (Springer, New York, 2008)

    Google Scholar 

  56. H. Dongcheol, C. Wallraven, L. Seong-Whan, View invariant body pose estimation based on biased manifold learning, in Proceedings of ICPR, pp. 3866–3869 2010

    Google Scholar 

  57. A.K. Bourke, G.M. Lyons, A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. J. 30(1), 84–90 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leone, A., Diraco, G. (2013). TOF Cameras in Ambient Assisted Living Applications. In: Remondino, F., Stoppa, D. (eds) TOF Range-Imaging Cameras. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27523-4_10

Download citation

Publish with us

Policies and ethics