Skip to main content

Vertical Cavities and Micro-Ring Resonators

  • Chapter
  • First Online:
Book cover Semiconductor Modeling Techniques

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 159))

  • 2036 Accesses

Abstract

The scope of this chapter is to present the concepts of vertical cavities (VCs) and \(\mu \)-ring resonators (MRs). The chapter commences with the motivation for progressing beyond conventional edge-emitting cavities emphasising on the potential of VC and MRs. The fundamental physics of VC and MRs is then analysed focusing on device design aspects. VCs are studied for optical amplifier applications. Lasing VCs are analysed in terms of polarisation dynamics. MRs in single and multi-ring configurations, like coupled resonator optical waveguides (CROWs) and side-coupled integrated spaced sequence of resonators, (SCISSORs) are discussed. Active MRs for lasers and amplifiers are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Iga, Surface emitting laser-its birth and generation of new optoelectronics field. IEEE J. Sel. Topics Quantum Electron. 6(6), 1201–1215 (2000)

    Google Scholar 

  2. P.B. Hansen, G. Raybon, M.-D. Chien, U. Koren, B.I. Miller, M.G. Young, J.-M. Verdiell, C.A. Burrus, A 1.54 \(\mu \)m monolithic semiconductor ring laser: CW and mode-locked operation. IEEE Photon. Technol. Lett. 4, 411–413 (1992)

    Article  ADS  Google Scholar 

  3. C.W. Wilmsen, H. Temkin, L.A. Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, (Cambridge Studies in Modern Optics) (Cambridge University Press, Cambridge), (New Ed edition), 12 Nov 2001

    Google Scholar 

  4. S.F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (Wiley Series in Lasers and Applications) (Wiley-Blackwell, New York), 19 Sept 2003

    Google Scholar 

  5. J.S. Harris, T. O’Sullivan, T. Sarmiento, M.M. Lee, S. Vo, Emerging applications for vertical cavity surface emitting lasers. Semicond. Sci. Technol. 26, 014010 (2011)

    Google Scholar 

  6. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley-Interscience, New York, 2002

    Google Scholar 

  7. M. Silver, W.E. Booij, S. Malik, A. Galbraith, S. Uppal, P.F. McBrien, G.M. Berry, P.D. Ryder, S.J. Chandler, D.M. Atkin, R. Harding, R.M. Ash, Very wide temperature (-20 to 95oC) operation of an uncooled 2.5Gbit/s 1300 nm DFB laser. in Proceedings of the 14th IEEE LEOS Annual Meeting, 1 and 2, pp. 796–797, 2001

    Google Scholar 

  8. M. Kondow, T. Kitatani, S. Nakatsuka, M. Larson, K. Nakahara, Y. Yazawa, M. Okai, K. Uomi, GaInNAs: a novel material for long-wavelength semiconductor lasers. IEEE J. Sel. Topics Quantum Electron. 3, 719–730 (1997)

    Article  Google Scholar 

  9. V.M. Ustinov, A.E. Zhukov, GaAs-based long-wavelength lasers. Semicond. Sci. Technol. 15, R41–R54 (2000)

    Article  ADS  Google Scholar 

  10. N. Margalit, D. Babic, K. Streubel, R. Mirin, R. Naone, J. Bowers, and E. Hu, Submilliamp long wavelength vertical cavity lasers. Electron. Lett. 32(18), 1675–1677 (1996)

    Google Scholar 

  11. A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S.Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, E. Kapon, 1.55 \(\mu \)m optically pumped wafer-fused tunable VCSELs with 32-nm tuning range. IEEE Photonics Technol. Lett. 16(9), 1991–1993 (2004)

    Google Scholar 

  12. R. Shau, M. Ortsiefer, J. Rosskopf, G. Bohm, F. Kohler, and M.-C. Amann, Vertical-cavity surface-emitting laser diodes at 1.55 \(\mu \)m with large output power and high operation temperature. Electron. Lett. 37, 1295 (2001)

    Google Scholar 

  13. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, B.-S. Yoo, All-epitaxial InAlGaAs-InP VCSELs in the 1.3\(-\)1.6-\(\mu \)m wavelength range for CWDM band applications. IEEE Photonics Technol. Lett. 18(16), 1717–1719 (2006)

    Google Scholar 

  14. P. Yeh, A. Yariv, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984)

    Google Scholar 

  15. D.I. Babic, S.W. Corzine, Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron. 28, 514–524 (1992)

    Article  ADS  Google Scholar 

  16. S.W. Corzine, R.S. Geels, J.W. Scott, R.H. Yan, L.A. Coldren, Design of Fabry-Perot surface-emitting lasers with a periodic gain structure. IEEE J. Quantum Electron. 25, 1513–1524 (1989)

    Article  ADS  Google Scholar 

  17. J. Piprek, S. Bjorlin, J.E. Bowers, Design and analysis of vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron. 37, 127–134 (2001)

    Article  ADS  Google Scholar 

  18. M.J. Adams, J.V. Collins, I.D. Henning, Analysis of semiconductor laser optical amplifiers. IEE Proc. Pt J. 132, 58–63 (1985)

    Google Scholar 

  19. P. Royo, R. Koda, L.A. Coldren, Vertical cavity semiconductor optical amplifiers: comparison of Fabry-Perot and rate equation approaches. IEEE J. Quantum Electron. 38, 279–284 (2002)

    Article  ADS  Google Scholar 

  20. B.R. Bennett, R.A. Soref, J.A. Del Alamo, Carrier induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990)

    Article  ADS  Google Scholar 

  21. M.J. Adams, H.J. Westalake, M.J. O’ Mahony, I.D. Henning, A comparison of active and passive optical bistability in semiconductors. IEEE J. Quantum Electron. 21, 1498–1504 (1985)

    Article  ADS  Google Scholar 

  22. M.J. Adams, A. Hurtado, D. Labukhin, I.D. Henning, Nonlinear semiconductor lasers and amplifiers for all-optical information processing. Chaos, 20, 037102, (2010)

    Google Scholar 

  23. J. Martin-Regalado, F. Pratl, M. San Miguel, N.B. Abraham, Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 765–783 (1997)

    Article  ADS  Google Scholar 

  24. M. San Miguel, Q. Feng, J.V. Moloney, Light-polarization dynamics in surface emitting semiconductor lasers. Phys. Rev. A 52(2), 1728–1739 (1995)

    Article  ADS  Google Scholar 

  25. A. Homayounfar, M.J. Adams, Locking bandwidth and birefringence effects for polarized optical injection in vertical-cavity surface-emitting lasers. Opt. Commun. 269, 119–127 (2007)

    Article  ADS  Google Scholar 

  26. R. K. Al-Seyab, D. Alexandropoulos, I. D. Henning and M. J. Adams, Instabilities in Spin-Polarized Vertical-Cavity Surface-Emitting Lasers. IEEE Photon. J. 3, 799–809 (2011)

    Article  Google Scholar 

  27. K.E. Chlouverakis, M.J. Adams, Stability maps of injection-locked laser diodes using the largest Lyapunov exponent. Opt. Commun. 216, 405–412 (2003)

    Article  ADS  Google Scholar 

  28. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Effect of size and roughness on light transmission in a SiOSiO2 waveguide: Experiments and model. Appl. Phys. Lett. 77, 1617–1619 (2000)

    Article  ADS  Google Scholar 

  29. K. Vahala, Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  30. J. Scheuer, A. Yariv, Fabrication and Characterization of low-loss polymeric waveguides and micro-resonators. J. Euro. Opt. Soc. Rapid Pub. 1, 06007 (2006)

    Google Scholar 

  31. H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, 1983)

    Google Scholar 

  32. M. Heiblum, J.H. Harris, Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 11, 75–83 (1975)

    Article  ADS  Google Scholar 

  33. C.K. Madsen, J.H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, 1st edn. (Wiley-Interscience, New York, 1999)

    Google Scholar 

  34. J. Scheuer, G.T. Paloczi, A. Yariv, All-optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators. Appl. Phys. Lett. 87, 251102 (2005)

    Article  ADS  Google Scholar 

  35. J. Scheuer, G.T. Paloczi, J.K.S. Poon, A. Yariv, Coupled resonator optical waveguides: towards slowing and storing of light. Opt. Photon. News 16, 36 (2005)

    Article  ADS  Google Scholar 

  36. J. Heebner et al., Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B. 21, 1818–1832 (2004)

    Article  ADS  Google Scholar 

  37. O. Weiss, J. Scheuer, Side coupled adjacent resonators CROW—formation of mid-band zero group velocity. Opt. Express 17, 14817 (2009)

    Article  ADS  Google Scholar 

  38. J.B. Khurgin, R.S. Tucker (ed.), Slow Light: Science and Applications (CRC Press, Boca Raton, 2008)

    Google Scholar 

  39. J.K.S. Poon, J. Scheuer, S. Mookherjea, G.T. Paloczi, Y. Huang, A. Yariv, Matrix analysis of coupled-resonator optical waveguides. Opt. Express 12, 90 (2004)

    Article  ADS  Google Scholar 

  40. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    Article  ADS  Google Scholar 

  41. D. Alexandropoulos, H. Simos, M.J. Adams and D.Syvridis, Optical bistability in active semiconductor micro-ring resonators. IEEE J. Sel. Top. Quantum Electron. 14, 918–926 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Part of the work of DA was supported by the UK Engineering and Physical Science Research Council (EPSRC) under a visiting fellowship Grant No. EP/H00873X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Alexandropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexandropoulos, D., Scheuer, J., Adams, M. . (2012). Vertical Cavities and Micro-Ring Resonators. In: Balkan, N., Xavier, M. (eds) Semiconductor Modeling Techniques. Springer Series in Materials Science, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27512-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27512-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27511-1

  • Online ISBN: 978-3-642-27512-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics