Skip to main content

Fundamental Theory of Semiconductor Lasers and SOAs

  • Chapter
  • First Online:
Semiconductor Modeling Techniques

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 159))

  • 2020 Accesses

Abstract

This chapter aims to give a basic understanding of semiconductor lasers and semiconductor optical amplifiers (SOAs). Starting from the underlying physics of radiative emission, together with the elements of optical waveguide theory, simple approximations are found for optical gain, lasing threshold and cavity resonances. Rate equations are used to elucidate time-dependent laser behaviour and, in combination with a travelling-wave equation for spatial photon distribution, to describe the effects of saturation and crosstalk in SOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Faist, F. Capasso, D.L. Sivco, C. Sartori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  2. J. Liu, X. Sun, R. Camacho-Aguilera, L.C. Kimerling, J. Michel, Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010)

    Article  ADS  Google Scholar 

  3. M.G.A. Bernard, G. Duraffourg, Laser conditions in semiconductors. Phys. Status Solidi 1, 699–703 (1961)

    Google Scholar 

  4. P.W.A. McIlroy, A. Kurobe, Y. Uematsu, Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers. IEEE J Quantum Electron. 21, 1958–1963 (1985)

    Article  ADS  Google Scholar 

  5. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

    Google Scholar 

  6. S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995)

    Google Scholar 

  7. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, Berlin, 1999)

    Google Scholar 

  8. Z.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Y.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, V.G. Trofim, Investigation of the influence of the AlGaAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at the room temperature. Fiz. Tekh. Poluprovodn. 4, 1826–1829 (1970) (Sov. Phys. Semicond. 4, 1573–1575 (1971))

    Google Scholar 

  9. I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski, Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109–111 (1970)

    Article  ADS  Google Scholar 

  10. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa, GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance. Jpn. J. Appl. Phys. 35, 1273–1275 (1996)

    Article  ADS  Google Scholar 

  11. A.R. Adams, Band structure engineering for low-threshold high-efficiency semiconductor lasers. Electron. Lett. 22, 249–250 (1986)

    Article  Google Scholar 

  12. E. Yablonovitch, E.O. Kane, Reduction of lasing threshold current density by the lowering of valence band effective mass. J. Lightw. Technol. LT-4, 504–506 (1986)

    Google Scholar 

  13. D. Botez, Analytical approximation of radiation confinement factor for TE0 mode of a double heterojunction laser. IEEE J. Quantum Electron. 14, 230–232 (1978)

    Article  ADS  Google Scholar 

  14. J.E. Ripper, J.C. Dyment, L.A. D’Asaro, T.L. Paoli, Stripe-geometry double heterostructure junction lasers: mode structure and cw operation above room temperature. Appl. Phys. Lett. 18, 155–157 (1971)

    Article  ADS  Google Scholar 

  15. T. Tsukada, GaAs-Ga{1-x}Al{x}As buried-heterostructure injection lasers. J. Appl. Phys. 45, 4899–4906 (1974)

    Article  ADS  Google Scholar 

  16. I.P. Kaminow, R.E. Nahory, M.A. Pollack, L.W. Stulz, J.C. DeWinter, Single-mode c.w. ridge-waveguide laser emitting at \(1.55\,\mu \)m. Electron. Lett. 15, 763–765 (1979)

    Article  ADS  Google Scholar 

  17. J. Buus, M.-C. Amann, D.J. Blumenthal, Tunable Laser Diodes and Related Optical Sources, 2nd edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  18. H. Kogelnik, C.V. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)

    Article  ADS  Google Scholar 

  19. K. Konnerth, C. Lanza, Delay between current pulse and light emission of a gallium arsenide laser. Appl. Phys. Lett. 4, 120–121 (1964)

    Article  ADS  Google Scholar 

  20. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1978)

    Article  ADS  Google Scholar 

  21. C. Harder, K. Vahala, A. Yariv, Measurement of the linewidth enhancement factor \(\alpha \) of semiconductor lasers. Appl. Phys. Lett. 42, 328–330 (1983)

    Article  ADS  Google Scholar 

  22. A.E. Kelly, I.F. Lealman, L.J. Rivers, S.D. Perrin, M. Silver, Polarisation insensitive, 25 dB gain semiconductor laser amplifier without antireflection coatings. Electron. Lett. 32, 1835–1836 (1996)

    Article  Google Scholar 

  23. J. Piprek, S. Bjorlin, J.E. Bowers, Design and analysis of vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron. 37, 127–134 (2001)

    Article  ADS  Google Scholar 

  24. T. Ito, N. Yoshimoto, K. Magari, K. Kishi, Y. Kondo, Extremely low power consumption semiconductor optical amplifier gate for WDM applications. Electron. Lett. 33, 1791–1792 (1997)

    Article  Google Scholar 

  25. H. Ma, S.H. Chen, X.J. Yi, G.X. Gu, \(1.55\,\upmu\text{ m}\) spot-size converter integrated polarization-insensitive quantum-well semiconductor optical amplifier with tensile-strained barriers. Semicond. Sci. Technol. 19, 846–850 (2004)

    Google Scholar 

  26. J.Y. Jin, D.C. Tian, J. Shi, T.N. Li, Fabrication and complete characterization of polarization insensitive 1310 nm InGaAsP-InP quantum-well semiconductor optical amplifiers. Semicond. Sci. Technol. 19, 120–126 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike J. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adams, M.J. (2012). Fundamental Theory of Semiconductor Lasers and SOAs. In: Balkan, N., Xavier, M. (eds) Semiconductor Modeling Techniques. Springer Series in Materials Science, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27512-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27512-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27511-1

  • Online ISBN: 978-3-642-27512-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics