Skip to main content

Hot Electron Transport

  • Chapter
  • First Online:
Book cover Semiconductor Modeling Techniques

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 159))

  • 2029 Accesses

Abstract

In a high electric field, a population of electrons may be driven out of thermal equilibrium with the crystal lattice, hence becoming ‘hot’. In this chapter, the basic concepts of hot electron transport in semiconductors are introduced following a semiclassical approach. Scattering mechanisms pertinent to hot electron transport are described, including phonon, electron–electron and alloy scattering. The high-field phenomena of avalanche breakdown and negative differential resistance are discussed qualitatively in terms of the underlying physics and as a motivation for device applications. Techniques to solve the Boltzmann transport equation are then introduced. A low-field solution, including an introduction to the ladder method for dealing with polar optical phonon scattering, is first discussed as a foundation for the subsequent high-field solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.M. Johnson, Digest of Technical Papers, International Solid State Circuits Conference, vol. 7, 64 (1964)

    Google Scholar 

  2. J.B. Gunn, IBM J. Res.& Dev. 8, 141 (1964)

    Article  Google Scholar 

  3. A. O’Brien, N. Balkan, J. Roberts, Appl. Phys. Lett. 70, 366 (1997)

    Article  ADS  Google Scholar 

  4. S. Chung, N. Balkan, Appl. Phys. Lett. 86, 211111 (2005)

    Article  ADS  Google Scholar 

  5. B.K. Ridley, Rep. Prog. Phys. 54, 169 (1991)

    Article  ADS  Google Scholar 

  6. N.W. Aschcroft and N.D. Mermin, Solid State Physics, (Saunders, Philadelphia 1976)

    Google Scholar 

  7. H. Ehrenreich, Phys. Rev. 120, 1951 (1960)

    Article  ADS  Google Scholar 

  8. E.M. Conwell, M.O. Vassell, Phys. Rev. 166, 797 (1967)

    Article  ADS  Google Scholar 

  9. B.K. Ridley, Quantum Processes in Semiconductors, 4th ed. (Clanderon Press, Oxford 1999)

    Google Scholar 

  10. H. Brooks, Adv. Electron. Electron Phys. 7, 85 (1955)

    Article  Google Scholar 

  11. L. Nordheim, Ann. Phys. 9, 607 (1931)

    Article  Google Scholar 

  12. P.A. Flinn, Phys. Rev. 104, 350 (1956)

    Article  ADS  Google Scholar 

  13. G.L. Hall, Phys. Rev. 116, 604 (1959)

    Article  ADS  Google Scholar 

  14. A.E. Asch, G.L. Hall, Phys. Rev. 132, 1047 (1963)

    Article  ADS  Google Scholar 

  15. J.W. Harrison, J.R. Hauser, Phys. Rev. B 13, 5347 (1976)

    Article  ADS  Google Scholar 

  16. F. Murphy-Armando, S. Fahy, Phys. Rev. Lett. 97, 96606 (2006)

    Article  ADS  Google Scholar 

  17. R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge 2004)

    Google Scholar 

  18. J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford 1960)

    Google Scholar 

  19. M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80, 2234 (1996)

    Article  ADS  Google Scholar 

  20. S. Joyce, F. Murphy-Armando, S. Fahy, Phys. Rev. B 75, 155201 (2007)

    Article  ADS  Google Scholar 

  21. F. Murphy-Armando, S. Fahy, Phys. Rev. B 78, 35202 (2008)

    Article  ADS  Google Scholar 

  22. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  23. B.K. Ridley, Semicond. Sci. Technol. 4, 1142 (1989)

    Article  ADS  Google Scholar 

  24. B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96, 1499 (2004)

    Article  ADS  Google Scholar 

  25. P.A. Wolff, Phys. Rev. 95, 1415 (1954)

    Article  ADS  Google Scholar 

  26. W. Shockley, Solid State Electron. 2, 35 (1961)

    Article  ADS  Google Scholar 

  27. B.K. Ridley, J. Phys. C: Solid State Phys. 16, 3373 (1983)

    Article  ADS  Google Scholar 

  28. T.P. Lee and T. Li in Optical Fiber Telecommunications I, Ch. 18, ed. by S.E. Miller and A.G. Chynoweth (Academic Press, San Diago 1979)

    Google Scholar 

  29. R.J. McIntyre, IEEE Trans. Electron. Dev. 13, 164 (1966)

    Article  Google Scholar 

  30. B.K. Ridley, T.B. Watkins, Proc. Phys. Soc. 78, 293 (1961)

    Article  ADS  Google Scholar 

  31. C. Hilsum, Proc. IRE 50, 185 (1962)

    Article  Google Scholar 

  32. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)

    Article  ADS  Google Scholar 

  33. A. Patanè, A. Ignatov, D. Fowler, O. Makarovsky, L. Eaves, L. Geelhaar, H. Riechert, Phys. Rev. B 72, 033312 (2005)

    Article  ADS  Google Scholar 

  34. B.K. Ridley, Proc. Phys. Soc. 82, 954 (1963)

    Article  ADS  Google Scholar 

  35. C. Kittel and H. Kroemer, Thermal Physics 2nd ed. (W.H. Freeman and Co., New York 2002), p. 408

    Google Scholar 

  36. K. Fletcher, P.N. Butcher, J. Phys. C: Solid State Phys. 5, 212 (1972)

    Article  ADS  Google Scholar 

  37. M.P. Vaughan, Alloy and Phonon Scattering-Limited Electron Mobility in Dilute Nitrides (University of Essex, UK 2007)

    Google Scholar 

  38. W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities (Braunschweig, Germany 1998) p. 2

    Google Scholar 

  39. M. Seifikar, E.P. O’Reilly and S. Fahy, Phys. Rev. B 84, 165216 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks Masoud Seifikar for useful discussions on the high-field solution of the Boltzmann equation. The author’s current position at the Tyndall National Institute is funded by the Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin P. Vaughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaughan, M.P. (2012). Hot Electron Transport. In: Balkan, N., Xavier, M. (eds) Semiconductor Modeling Techniques. Springer Series in Materials Science, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27512-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27512-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27511-1

  • Online ISBN: 978-3-642-27512-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics