Skip to main content

Battery Models for Estimation of State of Charge by Sliding Mode Observer

  • Conference paper
Sustainability in Energy and Buildings

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 12))

Abstract

This paper presents an analysis of the equivalent circuits proposed for modeling some batteries behaviour. This will show that a third order state space model can be a good deal when used with robust state observer converging in finit time. A robust on-line estimation of State Of Charge is developped. We propose a reduced complexity and Sliding Mode Observer for battery SOC estimation. We review some of the litterature Electrical models and develop their state space formulation. The SMO robust observers are developped and compared in some simulations to emphasize the observers performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shiao, Y.-S., Su, D.-T., Yang, J.-L., Hung, R.-W.: Electrochemistry Theorem Based State-of-Charge Estimation of the Lead Acid Batteries for Electric Vehicles. WSEAS Transactions on Systems 7(10), 1092–1103 (2008), ISSN: 1109-2777

    Google Scholar 

  2. Santhanagopalan, S., White, R.E.: Online estimation of the state of charge of a lithium ion cell. Journal of Power Sources 161, 1346–1355 (2006)

    Article  Google Scholar 

  3. Paxton, B., Newmann, J.: Modeling of nickel metal hydride. Journal of Electrochemical Society 144 (1997)

    Google Scholar 

  4. Di Domenico, D., Fiengo, G., Stefanopoulou, A.: Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model

    Google Scholar 

  5. Salkind, A.J., Fennie, C., Singh, P., Atwater, T., Reisner, D.E.: Determination of state-of-charge and state-of-health of batts. by fuzzy logic methodology. J. Power Sources 80, 293–300 (1999)

    Article  Google Scholar 

  6. Chan, C.C., Lo, E.W., Weixiang, S.: The available capacity computation model based on artificial neural network for lead acid batteries in electric vehicles. J. Power Source 87, 201–204 (2000)

    Article  Google Scholar 

  7. Singh, P., Fennie, C., Reisner, D.E., Salkind, A.: A fuzzy logic approach to state of charge determination in high performance batteries with applications to electric vehicle. In: Proceedings on CD-ROM, Electric Vehicle Symp., Brussels, Belgium, September 30-33, vol. EVS-15 (1998)

    Google Scholar 

  8. Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140 (1993)

    Google Scholar 

  9. Kim, I.-S.: Nonlinear State of Charge Estimator for Hybrid Electric Vehicle Battery. IEEE Tansaction on Power Electronics 23(4) (July 2008)

    Google Scholar 

  10. Gould, C.R., Bingham, C.M., Stone, D.A., Bentley, P.: New Battery Model and State-of-Health Determination Through Subspace Parameter Estimation and State-Observer Techniques. IEEE Tans. on Vehicular Technology 58(8) (October 2009)

    Google Scholar 

  11. Plette, G.L.: Extended kalman filtering for battery management system of LiPB-based HEV battery packs–Part 2. Modeling and identification. J. Power Source 134, 262–276 (2004); [4] Jang, S.I., Shin, M.C., Yoon, C.D., Campbell, R.C.: A study on adaptive autoreclosure scheme with real-time transient stability. J. Elect. Eng. & Technol. 1(1), 8–15 (2006)

    Article  Google Scholar 

  12. Bhangu, B.S., Bentley, P., Bingham, C.M.: Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicle. IEEE Trans. Veh. Technol. 54(3), 783–794 (2005)

    Article  Google Scholar 

  13. Piller, S., Perrin, M., Jossen, A.: Methods for state-of-charge determination and their applications. J. Power Source 116, 113–129 (2001)

    Article  Google Scholar 

  14. Jang, S.I., Shin, M.C., Yoon, C.D., Campbell, R.C.: A study on adaptive autoreclosure scheme with real-time transient stability. J. Elect. Eng. & Technol. 1(1), 8–15 (2006)

    Article  Google Scholar 

  15. Park, I., Kim, S.: A sliding mode observer design for fuel cell electric vehicles. J. Power Electron. 6(2), 172–177 (2006)

    Google Scholar 

  16. Hu, X., Sun, F., Zou, Y.: Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer. Energies-Open Access Journal 3, 1586–1603 (2010), www.mdpi.com/journal/energies

    Google Scholar 

  17. Yan, J., Xu, G., Qian, H., Xu, Y.: Robust State of Charge Estimation for Hybrid Electric Vehicles: Framework and Algorithms. Energies - Open Access Journal 3, 1654–1672 (2010)

    Google Scholar 

  18. Pang, S., Farrel, J., Du, J., Barth, M.: Battery State of Charge estimation. In: Proc. of ACC, vol. 2, pp. 1644–1649 (June 2001)

    Google Scholar 

  19. Chen, M., Rincon-Mora, G.: Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance. IEEE Trans. on Energy Conversion 21(2) (June 2006)

    Google Scholar 

  20. Manwell, J.F., McGowan, J.G., Abdulwahid, U., Wu, K.: Improvements to the Hybrid2 Battery Model

    Google Scholar 

  21. Wang, C.Y., Gu, W.B., Liaw, B.Y.: Micro-macroscopic coupled modeling of batteries and fuel cells. part i: Model development. J. Electrochem. Soc. 145 (1998)

    Google Scholar 

  22. Newman, J., Tiedemann, W.: Porus-electrode theory with battery applications. AIChE Journal 21 (1975)

    Google Scholar 

  23. Barbarisi, O., Vasca, F., Glielmo, L.: State of charge kalman filter estimator for automotive batteries. Control Engineering Practice 14, 267–275 (2006)

    Article  Google Scholar 

  24. Gomadam, P.M., Weidner, J.W., Dougal, R.A., White, R.E.: Mathematical modeling of lithium-ion and nickel battery systems. J. Power Sources 110(2), 267–284 (2002)

    Article  Google Scholar 

  25. Dennis, D.W., Battaglia, V.S., Belanger, A.: Electrochemical modeling of lithium polymer batteries. J. Power Source 110(2), 310–320 (2002)

    Article  Google Scholar 

  26. Song, L., Evans, J.W.: Electrochemical-thermal model of lithium polymer batteries. J. Electrochem. Soc. 147, 2086–2095 (2000)

    Article  Google Scholar 

  27. Newman, J., Thomas, K.E., Hafezi, H., Wheeler, D.R.: Modeling of lithium-ion batteries. J. Power Sources 119-121, 838–843 (2003)

    Article  Google Scholar 

  28. Pedram, M., Wu, Q.: Design considerations for battery-powered electronics. In: Proc. 1999 Des. Autom. Conf., pp. 861–866 (1999)

    Google Scholar 

  29. Chiasserini, C.F., Rao, R.R.: Energy efficient battery management. IEEE J. Sel. Areas Commun. 19(7), 1235–1245 (2001)

    Article  Google Scholar 

  30. Rynkiewicz, R.: Discharge and charge modeling of lead acid batteries. In: Proc. Appl. Power Electron. Conf. Expo., vol. 2, pp. 707–710 (1999)

    Google Scholar 

  31. Pascoe, P.E., Anbuky, A.H.: VRLA battery discharge reserve time estimation. IEEE Trans. Power Electron. 19(6), 1515–1522 (2004)

    Article  Google Scholar 

  32. Buller, S., Thele, M., Doncker, R.W.D., Karden, E.: Impedancebased simulation models of supercapacitors and Li-ion batteries for power electronic applications. In: Conf. Rec. 2003 Ind. Appl. Conf., vol. 3, p. 159601600 (2003)

    Google Scholar 

  33. Baudry, P., Neri, M., Gueguen, M., Lonchampt, G.: Electro-thermal modeling of polymer lithium batteries for starting period and pulse power. J. Power Sources 54(2), 393–396 (1995)

    Article  Google Scholar 

  34. Benini, L., Castelli, G., Macci, A., Macci, E., Poncino, M., Scarsi, R.: Discrete-time battery models for system-level low-power design. IEEE Trans. VLSI Syst. 9(5), 630–640 (2001)

    Article  Google Scholar 

  35. Gold, S.: A pspice macromodel for lithium-ion batteries. In: Proc. 12th Annu. Battery Conf. Applications and Advances, pp. 215–222 (1997)

    Google Scholar 

  36. Salameh, Z.M., Casacca, M.A., Lynch, W.A.: A mathematical model for lead-acid batteries. IEEE Trans. Energy Convers. 7(1), 93–98 (1992)

    Article  Google Scholar 

  37. Valvo, M., Wicks, F.E., Robertson, D., Rudin, S.: Development and application of an improved equivalent circuit model of a lead acid battery. In: Proc. Energy Convers. Eng. Conf., vol. 2, pp. 1159–1163 (August 1996)

    Google Scholar 

  38. Ceraolo, M.: New dynamical models of lead-acid batteries. IEEE Trans. Power Syst. 15(4), 1184–1190 (2000)

    Article  Google Scholar 

  39. Barsali, S., Ceraolo, M.: Dynamical models of lead-acid batteries: Implementation issues. IEEE Trans. Energy Convers. 17(1), 16–23 (2002)

    Article  Google Scholar 

  40. Johnson, V.H., Pesaran, A.A., Sack, T.: Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries. In: 17th Electric Vehicle Symposium Montreal, Canada, October 16-18 (2000)

    Google Scholar 

  41. Wipke, K.: ADVISOR 3.2 Documentation; NREL: Golden, CO, USA (2001), NREL. Advisor software, http://www.NREL.org

  42. Hu, X., Sun, F., Zou, Y.: Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer. Energies 3, 1586–1603 (2010), www.mdpi.com/journal/energies

    Article  Google Scholar 

  43. Vasebi, A., Bathaee, S.M.T., Partovibakhsh, M.: Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter. Energy Conversion and Management 49, 75–82 (2008)

    Article  Google Scholar 

  44. Utkin, V., Guldner, J., Shi, J.: Sliding mode control in electromechanical systems, London (1999)

    Google Scholar 

  45. M’sirdi, N.K., Rabhi, A., Zbiri, N., Delanne, Y.: Vrim: Vehicle road interaction modelling for estimation of contact forces. Tyre Colloquium Tyre Models For Vehicle Dynamics Analysis (2004)

    Google Scholar 

  46. M’sirdi, N.K., Rabhi, A., Fridman, L., Davila, J., Delanne, Y.: Second order sliding mode observer for estimation of velocities, wheel sleep, radius and stiness. In: Proceedings of the 2006 American Control Conference, ACC, Minneapolis, USA, June 14-16, pp. 3316–3321 (2006)

    Google Scholar 

  47. Levant, A.: High-order sliding modes: differentiation and outputfeedback control. International Journal of Control 76(9-10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

M’Sirdi, N.K., Belhani, A., Naamane, A. (2012). Battery Models for Estimation of State of Charge by Sliding Mode Observer. In: M’Sirdi, N., Namaane, A., Howlett, R.J., Jain, L.C. (eds) Sustainability in Energy and Buildings. Smart Innovation, Systems and Technologies, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27509-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27509-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27508-1

  • Online ISBN: 978-3-642-27509-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics