Skip to main content

Applications of Bioimpedance to End Stage Renal Disease (ESRD)

  • Chapter
Modelling and Control of Dialysis Systems

Abstract

This chapter develops a thorough review of the methods and techniques used for the analysis of body composition of renal patients based on bioimpedance measurements. The work ranges from the physical principles, to bioelectric models of human body, instrumentation, configurations in the position of electrodes, equations to calculate body composition, bioimpedance nephrological applications and clinical analysis of results. This text provides a multidisciplinary approach that will allow the reader to understand and comprehend this kind of technology, so it can be used both by engineers as a basis for the development of bioimpedance medical devices, and by medical staff to apply the bioimpedance analysis techniques in a better control and management of patients with ESRD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg, P., Nicancer, I., Ollmar, S.: Minimally invasive electrical im-pedance spectroscopy of skin exemplified by skin cancer assessments. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3211–3214 (2003)

    Google Scholar 

  • Akern web site (2011), http://www.akern.com/ (accessed August 2011)

  • Al-Surkhi, O.I., Riu, P.J., Vazquez, F.F., et al.: Monitoring Cole-Cole Parameters During Haemodialysis (HD). In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 2238–2241 (2007)

    Google Scholar 

  • Amaral, C.E.F., Wolf, B.: Effects of glucose in blood and skin impedance spectroscopy. In: AFRICON (2007), doi:10.1109

    Google Scholar 

  • Atzler, E., Lehmann, G.: Über ein Neues Verfahren zur Darstellung der Herztätigkeit (Dielektrographie). Arbeitsphysiol. 6, 636–680 (1931)

    Google Scholar 

  • Basaleem, H.O., Alwan, S.M., Ahmed, A.A., et al.: Assessment of the Nutritional Status of End-Stage Renal Disease Patients on Maintenance Hemodialysis. Saudi J. Kidney Dis. Transplant. 15(4), 455–462 (2004)

    Google Scholar 

  • Baumgartner, R.N., Heymsfield, S.B., Lichtman, S., et al.: Body composition in elderly people: effect of criterion estimates on predictive equations. Am. J. Clin. Nutr. 53(6), 1345–1353 (1991)

    Google Scholar 

  • Bodystat web site, http://www.bodystat.com/ (accessed August 2011)

  • Buchholz, A.C., Bartok, C., Schoeller, D.A.: The Validity of Bioelectrical Impedance Models in Clinical Populations. Nutr. Clin. Pract. 19(5), 433–446 (2004)

    Article  Google Scholar 

  • Callaghan, J.J., Rosenberq, A.G., Rubash, H.E.: The adult knee, 2nd edn. Lippincott Williams & Wilkins (2003)

    Google Scholar 

  • Chamney, P.W., Krämer, M., Rode, C., et al.: A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int. 61(6), 2250–2258 (2002)

    Article  Google Scholar 

  • Chamney, P.W., Wabel, P., Moissl, U.M., et al.: A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 85(1), 80–89 (2007)

    Google Scholar 

  • Charra, B.: Fluid balance, dry weight, and blood pressure in dialysis. Hemodial. Int. 11(1), 21–31 (2007)

    Article  Google Scholar 

  • Coin, A., Sergi, G., Minicuci, N., et al.: Fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20–80 year-old Italian population. Clin. Nutr. 27(1), 87–94 (2008)

    Article  Google Scholar 

  • Cole, K.S.: Membranes, ions and impulses: a chapter of classical biophysics. Univ. of California Press, Berkeley (1972)

    Google Scholar 

  • Colombo, O., Villani, S., Pinelli, G., et al.: To treat or not to treat: comparison of different criteria used to determine whether weight loss is to be recommended. Nutr. J. 7, 5 (2008)

    Article  Google Scholar 

  • Cornish, B.H., Thomas, B.J., Ward, L.C.: Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Phys. Med. Biol. 38(3), 337–346 (1993)

    Article  Google Scholar 

  • Coupaye, M., Bouillot, J.L., Poitou, C., et al.: Is Lean Body Mass Decreased after Obesity Treatment by Adjustable Gastric Banding? Obes. Surg. 17(4), 427–433 (2007)

    Article  Google Scholar 

  • Cox-Reijven, P.L., Soeters, P.B.: Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measured resistance values. Int. J. Obesity Rel. Metab. Disord. 24(3), 271–280 (2000)

    Article  Google Scholar 

  • De Lorenzo, A., Candeloro, N., Andreoli, A., et al.: Determination of intracellular water by multifrequency bioelectrical impedance. Ann. Nutr. Metab. 39(3), 177–184 (1995)

    Article  Google Scholar 

  • De Lorenzo, A., Andreoli, A., Matthie, J., et al.: Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl. Physiol. 82(5), 1542–1558 (1997)

    Google Scholar 

  • De Lorenzo, A., Sorge, R.P., Candeloro, C., et al.: New insights into body composition assessment in obese women. Can. J. Physiol. Pharmacol. 77(1), 17–21 (1999)

    Article  Google Scholar 

  • Deurenberg, P., van der Kooy, K., Leenen, R., et al.: Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int. J. Obes. 15(1), 17–25 (1991)

    Google Scholar 

  • Dittmar, M., Reber, H.: Evaluation of different methods for assessing intracellular fluid in healthy older people: a cross-validation study. J. Am. Geriatr. Soc. 50(1), 104–110 (2002)

    Article  Google Scholar 

  • Du Bois-Reymond, E.: Untersuchungen über thierische Elektricität. Reimer Verlag (1848)

    Google Scholar 

  • Dumler, F.: Best Method for Estimating Urea Volume of Distribution: Comparison of Single Pool Variable Volume Kinetic Modeling Measurements with Bioimpedance and Anthropometric Methods. ASAIO J. 50(3), 237–241 (2004)

    Article  Google Scholar 

  • Dziong, D., Bagnaninchi, P.O., Kearney, R.E., et al.: Nondestructive Online In Vitro Monitoring of Pre-Osteoblast Cell Proliferation Within Microporous Polymer Scaffolds. IEEE Trans. Nanobioscience 6(3), 249–258 (2007)

    Article  Google Scholar 

  • Earthman, C., Traughber, D., Dobratz, J., et al.: Bioimpedance Spectroscopy for Clinical Assessment of Fluid Distribution and Body Cell Mass. Nutr. Clin. Pract. 22(4), 389–405 (2007)

    Article  Google Scholar 

  • Edd, J.F., Rubinsky, B.: Assessment of the Viability of Transplant Organs with 3D Electrical Impedance Tomography. In: 27th Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 3, pp. 2644–2647 (2006)

    Google Scholar 

  • Edefonti, A., Paglialonga, F., Picca, M., et al.: A prospective multicentre study of the nutritional status in children on chronic peritoneal dialysis. Nephrol. Dial. Transplant. 21(7), 1946–1951 (2006)

    Article  Google Scholar 

  • Einthoven, W.: Un nouveau galvanometer. Arch. Néerland Sci. Exactes Naturelles 6, 625–633 (1901)

    Google Scholar 

  • Einthoven, W.: Le telecardiogramme. Arch. Int. Physiol. 4, 132–164 (1906)

    Google Scholar 

  • Eisenkolbl, J., Kartasurya, M., Widhalm, K.: Underestimation of percentage fat mass measured by bioelectrical impedance analysis compared to dual energy X-ray absorptiometry method in obese children. Eur. J. Clin. Nutr. 55(6), 423–429 (2001)

    Article  Google Scholar 

  • Ellis, K.J., Shypailo, R.J., Wong, W.W.: Measurement of body water by multifrequency bioelectrical impedance spectroscopy in a multiethnic pediatric population. Am. J. Clin. Nutr. 71(6), 1618 (1999)

    Google Scholar 

  • Espinosa-Cuevas, M.A., Hivas-Rodripuez, L., Gonzalez-Medina, E.C., et al.: Vectores de impedancia en población mexicana. Rev. Invest. Clin. 59(1), 15–24 (2007)

    Google Scholar 

  • Éninya, G.I., Ondzuls, P.A.: A portable rheograph for clinical studies. Biull. Eksp. Biol. Med. 52, 105–107 (1961)

    Google Scholar 

  • Fein, P., Chattopadhyay, J., Paluch, M.M., et al.: Enrollment Fluid Status Is Independently Associated with Long-Term Survival of Peritoneal Dialysis Patients. Adv. Perit. Dial. 24, 79–83 (2008)

    Google Scholar 

  • Fenech, M., Maasrani, M., Jaffrin, M.Y.: Fluid volumes determination by impedance spectroscopy and hematocrit monitoring: application to pediatric hemodialysis. Artif. Organs 25(2), 89–98 (2001)

    Article  Google Scholar 

  • Fenning, C.: A new method of recording physiologic activities–I: Recording respiration in small animals. J. Lab. Elin. Med. 22, 1279–1280 (1937)

    Google Scholar 

  • Fresenius web site, http://www.bcm-fresenius.com/ (accessed August 2011)

  • Gabriel, C., Gabriel, S., Corthout, E.: The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231–2249 (1996a)

    Article  Google Scholar 

  • Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996b)

    Article  Google Scholar 

  • Galvani, A.L.: De viribus electricitatis in motu musculari commentarius. De Boloniensi Scient. Et art. Instituto Etque Academia Commentarii 7, 363 (1791)

    Google Scholar 

  • Gibney, M.J., Elia, M., Ljungqvist, O., et al.: Clinical Nutrition. The Nutrition Society Textbook. Blackwell Science (2005)

    Google Scholar 

  • Grimnes, S., Martinsen, O.G.: Bioimpedance and Bioelectricity Basics. Academic Press, San Diego (2000)

    Google Scholar 

  • Hannan, W.J., Cowen, S.J., Fearson, K.C.H., et al.: Evaluation of multi-frequency bioimpedance analysis for the assessment of extracellular and total body water in surgical patients. Clin. Sci. (Lond.) 86(4), 479–485 (1994)

    Google Scholar 

  • Hannan, W.J., Cowen, S.J., Plester, C.E., et al.: Comparison of bio-impedance spectroscopy and multifrequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin. Sci. 89(5), 651–658 (1995)

    Google Scholar 

  • Heitmann, B.L.: Prediction of body water and fat in adult Danes from measurement of electrical impedance: A validation study. Int. J. Obes. 14(9), 789–802 (1990a)

    Google Scholar 

  • Heitmann, B.L.: Evaluation of body fat estimated from body mass index, skinfolds and impedance: A comparative study. Eur. J. Clin. Nutr. 44(11), 831–837 (1990b)

    Google Scholar 

  • Henderson, R.P., Webster, J.G.: An Impedance Camera for Spatially Specific Measurements of the Thorax. IEEE Trans. Biomed. Eng. 25(3), 250–254 (1978)

    Article  Google Scholar 

  • Hoeger, W.K., Hoeger, S.A.: Principles and Labs for Fitness and Wellness. Cengage Learning. Wadsworth, USA (2010)

    Google Scholar 

  • Hoffer, E.C., Meador, C.K., Simpson, D.C.: Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 27(4), 531–534 (1969)

    Google Scholar 

  • Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications. Institute of Physics Publishing (2004)

    Google Scholar 

  • ICNIRP: International Commission on Non-Ionizing Radiation Protection, Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields up to 300 GHz. Health Phys. 74(4), 494–522 (1998)

    Google Scholar 

  • ICNIRP: International Commission on Non-Ionizing Radiation Protection, ICNIRP Statement on the Guidelines for limiting exposure to time-varying electric, magnetic and electromagetic fields (up to 300 GHz). Health Phys. 97(3), 257–258 (2009)

    Google Scholar 

  • Impedimed web site, http://www.impedimed.com/ (accessed August 2011)

  • Jaffrin, M.Y., Fenech, M., de Fremont, J.F., et al.: Continuous Monitoring of Plasma, Interstitial, and Intracellular Fluid Volumes in Dialyzed Patients by Bioimpedance and Hematocrit Measurements. ASAIO J. 48(3), 326–333 (2002)

    Article  Google Scholar 

  • Jaffrin, M.Y., Morel, H.: Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 30(10), 1257–1269 (2008)

    Article  Google Scholar 

  • Kaysen, G.A., Zhu, F., Sarkar, S., et al.: Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. Am. J. Clin. Nutr. 82(5), 988–995 (2005)

    Google Scholar 

  • Kennedy, J.: Multifrequency Bioimpedance Determination. US Patent 2006/0004300 A1 (2006)

    Google Scholar 

  • Kotanko, P., Levin, N.W., Zhu, F.: Current state of bioimpedance technologies in dialysis. Nephrol. Dial. Transplant. 23(3), 808–812 (2008)

    Article  Google Scholar 

  • Kushner, R.F., Schoeller, D.A.: Estimation of total body water by bioelectrical impedance analysis. Am. J. Clin. Nutr. 44(3), 417–424 (1986)

    Google Scholar 

  • Kyle, U.G., Genton, L., Karsegard, L., et al.: Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17(3), 248–253 (2001)

    Article  Google Scholar 

  • Kyle, U.G., Nicod, L., Raguso, C., et al.: Prevalence of low fat-free mass index and high and very high body fat mass index following lung transplantation. Acta Diabetol. 40(suppl. 1), S258–S260 (2003)

    Article  Google Scholar 

  • Kyle, U.G., Bosaeus, I., Antonio, D.D., et al.: Bioelectrical impedance analysis—part I: review of principles and methods. Clinical Nutrition 23, 1226–1243 (2004a)

    Article  Google Scholar 

  • Kyle, U.G., Bosaeus, I., De Lorenzo, A.D., et al.: Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin. Nutr. 23(6), 1430–1453 (2004b)

    Article  Google Scholar 

  • Kyle, U.G., Morabia, A., Schutz, Y., et al.: Sedentarism Affects Body Fat Mass Index and Fat-Free Mass Index in Adults Aged 18 to 98 Years. Nutrition 20(30), 255–260 (2004c)

    Article  Google Scholar 

  • Kubiczek, W.G., Karnegis, J.N., Patterson, R.P., et al.: Development and evaluation of an impedance cardiac output system. Aerospace Med. 37(12), 1208–1212 (1966)

    Google Scholar 

  • Lindley, E.J., Chamney, P.W., Wuepper, A., et al.: A comparison of methods for determining urea distribution volume for routine use in on-line monitoring of haemodialysis adequacy. Nephrol. Dial. Transplant. 24(1), 211–216 (2009)

    Article  Google Scholar 

  • Lohman, T.G., Houtkooper, L.B., Going, S.B.: Body fat measurement goes hi-tech: not all are created equal. ACSM’s Health Fitness J. 1, 30–35 (1997)

    Google Scholar 

  • Lorenzo, A., Andreoli, A., Matthie, J., et al.: Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl. Physiol. 82(5), 1542–1558 (1997)

    Google Scholar 

  • Lowrie, E.G., Teehan, B.P.: Principles of prescribing dialysis therapy: Implementing recommendation from the National Co-operative Dialysis Study. Kidney Int. 23(13), S113–S122 (1983)

    Google Scholar 

  • Machek, P., Jirka, T., Moissl, U., et al.: Optimal fluid status assessed with bioimpedance spectroscopy reduces IMES and hospitalisation in hemodialysis patients. NDT Plus 1(2), ii322–ii322 (2008)

    Google Scholar 

  • Matteucci, L.: Sur un phénomène physiologique produit par les muscles en conctraction. Ann. Chim. Et. Phys. 6, 339 (1842)

    Google Scholar 

  • Matthie, J.R., Withers, P.O., Van Loan, M.D., Mayclin, P.L.: Development of commercial complex bio-impedance spectroscopic system for determining intracellular and extracellular water volumes. In: Proc. of the 8th Int. Conf. on Electrical Bio-Impedance, pp. 203–205 (1992)

    Google Scholar 

  • Matthie, J.R.: Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J. Appl. Physiol. 99(2), 780–781 (2005)

    Article  Google Scholar 

  • Medrano, G., Eitner, F., Floege, J.Ü., et al.: A Novel Bioimpedance Technique to Monitor Fluid Volume State During Hemodialysis Treatment. ASAIO J. 56(3), 215–220 (2010)

    Article  Google Scholar 

  • Min, M.M., Kink, A., Land, R., et al.: Modification of Pulse Wave Signals in Electrical Bioimpedance Analyzers for Implantable Medical Devices. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, vol. 3, pp. 2263–2266 (2004)

    Google Scholar 

  • Moissl, U.M., Wabel, P., Chamney, P.W., et al.: Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas. 27(9), 921–933 (2006)

    Article  Google Scholar 

  • Naiman, N., Cheung, A.K., Goldfarb-Rumyantzev, A.S.: Familiality of cardiovascular mortality in end-stage renal disease patients. Am. J. Nephrol. 29(3), 237–243 (2009)

    Article  Google Scholar 

  • Nescolarde, L., Piccoli, A., Román, A., et al.: Bioelectrical impedance vector analysis in haemodialysis patients: relation between oedema and mortality. Physiol. Meas. 25(5), 1271–1280 (2004)

    Article  Google Scholar 

  • Nescolarde, L., Doñate, T., Piccoli, A., et al.: Comparison of segmental with whole-body impedance measurements in peritoneal dialysis patients. Med. Eng. Phys. 30(7), 817–824 (2008)

    Article  Google Scholar 

  • Neves, C.E.B., Souza, M.N.: A Comparison Between Impedance Measufled by a Commercial Analyzer and Your Value Adjusted by a Theoretical Model in Body Composition Evaluation. In: Proceedings of the 23rd Annual EMBS International Conference, vol. 4, pp. 3388–3391 (2001)

    Google Scholar 

  • NIH: National Institutes of Health, Bioelectrical Impedance Analysis in Body Composition Measurement. In: Technology Assessment Conference Statement, vol. (11-12), pp. 749–762 (1994)

    Google Scholar 

  • Nyboer, J.: Electrical Impedance Plethysmography: A Physical and Physiologic Approach to Peripheral Vascular Study. Circulation 2(6), 811–821 (1950)

    Article  Google Scholar 

  • Nobili, L.: Ueber einen neuen Galvanometer. J. Chem. und Physik. 45, 249–254 (1825)

    Google Scholar 

  • Pandey, V.K., Pandey, P.C.: Wavelet Based Cancellation of Respiratory Artifacts in Impedance Cardiography. In: 15th Int. Conf. on Digital Signal Processing, pp. 191–194 (2007)

    Google Scholar 

  • Passauer, J., Petrov, H., Schleser, A., et al.: Evaluation of clinical dry weight assessment in haemodialysis patients using bioimpedance spectroscopy: a cross-sectional study. Nephrol. Dial. Transplant. 25(2), 545–551 (2009)

    Article  Google Scholar 

  • Pastan, S., Gassensmith, C.: Total body water measured by bioelectrical impedance in patients after hemodialysis: comparison with urea kinetics. ASAIO J. 38(3), M186–M189 (1992)

    Article  Google Scholar 

  • Patterson, R.: Body fluid determinations using multiple impedance measurements. IEEE Eng. Med. Biol. Soc. Mag. 8(1), 16–18 (1989)

    Article  Google Scholar 

  • Piacentini, N., Demarchi, D., Civera, P., et al.: Blood cell counting by means of impedance measurements in a microsystem device. In: 30th Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 4824–4827 (2008)

    Google Scholar 

  • Piccoli, A., Rossi, B., Pillon, L., et al.: A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 46(2), 534–539 (1994)

    Article  Google Scholar 

  • Piccoli, A., Piazza, P., Noventa, D., et al.: A new method for monitoring hydration at high altitude by bioimpedance analysis. Med. Sci. Sports Exerc. 28(12), 1517 (1996)

    Article  Google Scholar 

  • Piccoli, A., Nescolarde, L.D., Rosell, J.: Análisis convencional y vectorial de bioimpedancia en la práctica clínica. Nefrología 12(3), 228–238 (2002a)

    Google Scholar 

  • Piccoli, A., Pillon, L., Dumler, F.: Impedance Vector Distribution by Sex, Race, Body Mass Index, and Age in the United States: Standard Reference Intervals as Bivariate Z Scores. Nutrition 18(2), 153–167 (2002b)

    Article  Google Scholar 

  • Prakash, S., Reddan, D., Heidenheim, A.P., et al.: Central, Peripheral, and Other Blood Volume Changes During Hemodialysis. ASAIO J. 48(4), 379–382 (2002)

    Article  Google Scholar 

  • Rjlsystems (2011), http://www.rjlsystems.com/ (accessed August 2011)

  • Rocco, M.V., Yan, G., Heyka, R.J., et al.: Risk factors for hypertension in chronic hemodialysis patients: baseline data from the HEMO study. Am. J. Nephrol. 21(4), 280–288 (2001)

    Article  Google Scholar 

  • Salter, D.C.: Quantifying skin disease and healing in vivo using electrical impedance measurements. In: Rolfe, P. (ed.) Non-invasive Physiological Measurements, vol. 1, pp. 21–68. Academic Press, London (1979)

    Google Scholar 

  • Schutz, Y., Kyle, U.U.G., Pichard, C.: Fat-free mass index and fat mass index percentiles in Caucasians aged 18 – 98 y. Int. J. Obes. Relat. Metab. Disord. 26(7), 953–960 (2002)

    Article  Google Scholar 

  • Sergi, G., Bussolotto, M., Perini, P., et al.: Accuracy of bioelectrical impedance analysis in estimation of extracellular spaces in healthy subjects and in fluid retention. Ann. Nutr. Metab. 38(3), 158–165 (1994)

    Article  Google Scholar 

  • Shulman, T., Heidenheim, A.P., Kianfar, C., et al.: Preserving Central Blood Volume: Changes in Body Fluid Compartments During Hemodialysis. ASAIO J. 47(6), 615–618 (2001)

    Article  Google Scholar 

  • Songer, J.: Tissue Ischemia Monitoring Using Impedance Spectroscopy: Clinical Evaluation. M.Sc. Worcester Polytechnic Institute (2001)

    Google Scholar 

  • Stolarczyk, L.M., Heyward, V.H., Hicks, V.L., et al.: Predictive accuracy of bioelectrical impedance in estimating body composition of Native American women. Am. J. Clin. Nutr. 59(5), 964–970 (1994)

    Google Scholar 

  • Sun, S.S., Chumlea, W.C., Heymsfield, S.B., et al.: Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 77(2), 331–340 (2003)

    Google Scholar 

  • Swatowski, A., Wizemann, V., Zaluska, W., et al.: Thoracic Impedance Measurements During Orthostatic Change Test and During Hemodialysis in Hemodialyzed Patients. ASAIO J. 50(6), 581–585 (2004)

    Article  Google Scholar 

  • Thommasset, A.: Bio-electrical properties of tissue impedance measurements. Lyon Med. 209, 1325–1352 (1963)

    Google Scholar 

  • Trebbels, D., Hradetzky, D., Zengerle, R., et al.: Capacitive on-line hematocrit sensor design based on impedance spectroscopy for use in hemodialysis machines. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1208–1211 (2009)

    Google Scholar 

  • Tura, A., Maran, A., Pacini, G.: Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract. 77(1), 16–40 (2007)

    Article  Google Scholar 

  • Valhalla web site, http://www.valhallascientific.com/ (accessed August 2011)

  • Van Loan, M.D., Withers, P., Matthie, J., et al.: Use of bioimpedance spectroscopy to determine extracellular fluid, intracellular fluid, total body water and fat-free mass. In: Ellis, K.J., Eastman, J.D. (eds.) Human Body Composition: in Vivo Methods, Models and Assessment, vol. 60, pp. 67–70. Plenum, New York (1993)

    Google Scholar 

  • Wabel, P., Moissl, U., Chamney, P., et al.: Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol. Dial. Transplant. 23, 2965–2971 (2008)

    Article  Google Scholar 

  • Wabel, P., Chamney, P., Moissl, U., et al.: Importance of Whole-Body Bioimpedance Spectroscopy for the Management of Fluid Balance. Blood Purif. 27(1), 75–80 (2009)

    Article  Google Scholar 

  • Wang, J.J., Hu, W.C., Kao, T., et al.: On Measuring the Changes in Stroke Volume from a Peripheral Artery by Means of Electrical Impedance Plethysmography. In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008, Shanghai, May 16-18, pp. 1409–1412 (2008)

    Google Scholar 

  • Watson, P.E., Watson, I.D., Batt, R.D.: Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 33(1), 27–39 (1980)

    Google Scholar 

  • Webster, J.G.: Medical Instrumentation: Application and Design, 4th edn. John Wiley & Sons, New York (2009)

    Google Scholar 

  • WHO web site, http://www.who.int/en/ (accessed December 2010)

  • Wizemann, V., Wabel, P., Chamney, P., et al.: The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 24(5), 1574–1579 (2009)

    Article  Google Scholar 

  • Woodrow, G., Oldroyd, B., Turney, J.H., et al.: Measurement of total body water by bioelectrical impedance in chronic renal failure. Eur. J. of Clin. Nutr. 50(10), 676–681 (1996)

    Google Scholar 

  • Wuepper, A., Tattersall, J., Kraemer, M.: Determination of urea distribution volume for Kt/V assessed by conductivity monitoring. Kidney Int. 64(6), 2262–2271 (2003)

    Article  Google Scholar 

  • Xitron web site, http://www.xitrontech.com/ (accessed August 2011)

  • Yang, Y., Wang, J.: Tetrapolar Method for Complex Bioimpedance Measurement: Theoretical Analysis and Circuit Realization. In: Proc. of the 2005 IEEE Engineering in Medicine and Biology: 27th Annual Conference, Shanghai, vol. 6, pp. 6605–6607 (2005)

    Google Scholar 

  • Zheng, S., Nandra, M.S., Chong, Y.T.: Human Blood Cell Sensing with Platinum Black Electroplated Impedance Sensor. In: 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2007, January 16-19, pp. 520–523 (2007)

    Google Scholar 

  • Zhou, Y.L., Liu, J., Sun, F.: Calf bioimpedance ratio improves dry weight assessment and blood pressure control in hemodialysis patients. Am. J. Nephrol. 32(2), 109–116 (2010)

    Article  Google Scholar 

  • Zhu, F., Kuhlmann, M.K., Kaysen, G.A.: Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients. J. Appl. Physiol. 100(2), 717–724 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Roa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roa, L.M. et al. (2013). Applications of Bioimpedance to End Stage Renal Disease (ESRD). In: Azar, A. (eds) Modelling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27458-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27458-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27457-2

  • Online ISBN: 978-3-642-27458-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics