Skip to main content

Flow Modeling of Hollow Fiber Dialyzers

  • Chapter
Modelling and Control of Dialysis Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 404))

Abstract

Renal replacement therapies keep the same principles that guided the first dialysis session performed by Kolff in 1943 over a human patient. Despite the interest to build an artificial kidney that replicate better the complex dynamics of the human kidneys, this task is still very immature. However, therapies based on artificial kidneys could improve the clinical outcomes if professionals could predict better their performance. This chapter shows the state of the art concerning this subject, following a top-down approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R., Frost, T.H., Hoenich, N.: The influence of the dialysate flow rate on hollow fiber hemodialyzer performance. Artificial Organs 19(11), 1176–1180 (1995)

    Article  Google Scholar 

  • Boerlage, S.F.E., Kennedy, M.D., Dickson, M.R., et al.: The modified fouling index using ultrafiltration membranes (MFI-UF): characterisation, filtration mechanisms and proposed reference membrane. Journal of Membrane Science 197(1-2), 1–21 (2002)

    Article  Google Scholar 

  • Borah, M.F., Shoenfeld, P.Y., Gotch, F.A., et al.: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int. 14(5), 491–500 (1978)

    Article  Google Scholar 

  • Clark, W.R.: Quantitative characterization of hemodialyzer solute and water transport. Seminars in Dialysis 14(1), 32–36 (2001)

    Article  Google Scholar 

  • Chang, Y.-L., Lee, C.-J.: Solute transport characteristics in hemodiafiltration. Journal of Membrane Science 39(2), 99–111 (1988)

    Article  Google Scholar 

  • Daugirdas, J.T., Blake, P.G., Ing, T.S. (eds.): Handbook of Dialysis. Lippincott Williams & Wilkins, Philadelphia (2007)

    Google Scholar 

  • Depner, T.A., Cheer, A.: Modeling urea kinetics with two vs. three BUN measurements. ASAIO J. 35(3), 499–502 (1989)

    Article  Google Scholar 

  • Derjani-Bayeh, S., Rodgers, V.G.J.: Sieving variations due to the choice in pore size distribution model. Journal of Membrane Science 209(1), 1–17 (2002)

    Article  Google Scholar 

  • Frank, A., Lipscomb, G.G., Dennis, M.: Visualization of concentration fields in hemodialyzers by computed tomography. Journal of Membrane Science 175(2), 239–251 (2000)

    Article  Google Scholar 

  • Friedman, M.H.: Principles and Models of Biological Transport. Springer, Heidelberg (1986)

    Google Scholar 

  • de Groot, S.R., Mazur, P.: Non-equilibrium thermodynamics. Dover Publications, Inc., New York (1984)

    Google Scholar 

  • Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology, 11th edn. Elsevier, Saunders (2006)

    Google Scholar 

  • Hardy, P.A., Poh, C.K., Liao, Z., et al.: The use of magnetic resonance imaging to measure the local ultrafiltration rate in hemodialyzers. Journal of Membrane Science 204(1-2), 195–205 (2002)

    Article  Google Scholar 

  • Jaffrin, M.: Convective mass transfer in hemodialysis. Artif. Organs 19(11), 1162–1171 (1995)

    Article  Google Scholar 

  • Legallais, C., Catapano, G., von Harten, B., Baurmeister, U.: A theoretical model to predict the in vitro performance of hemodiafilters. Journal of Membrane Science 168(1-2), 3–15 (2000)

    Article  Google Scholar 

  • Lienard IV, J.H., Lienard V, J.H.: A heat transfer textbook, 3rd edn. Phlogiston Press, Cambridge (2001)

    Google Scholar 

  • Lim, V., Flanigan, M., Fangman, J.: Effect of hematocrit on solute removal during high efficiency hemodialysis. Kidney Int. 37(6), 1557–1562 (1990)

    Article  Google Scholar 

  • MacKay Valera, V., Fernandez, I.P., Herrera Carranza, J., Sancez Burson, J.: An in vitro study of the influence of a drug’s molecular weight on its overall (Clt), diffusive (Cld) and convective (Clc) clearance through dialysers. Biopharm Drug Dispos. 16(1), 23–35 (1995)

    Article  Google Scholar 

  • Mercadal, L., Petitclerc, T., Jaudon, M.C., et al.: Is ionic dialysance a valid parameter for quantification of dialysis efficiency? Artificial Organs 22(12), 1005–1009 (1998)

    Article  Google Scholar 

  • Montero, F., Morán, F.: Biofísica: procesos de autoorganización en Biología, primera edición edn. Eudema, Salamanca (1992)

    Google Scholar 

  • Nepomnyashchy, A.A., Velarde, M.G., Colinet, P.: Interfacial Phenomena and Convection. CRC Press (2002)

    Google Scholar 

  • Nilsson, J.L.: Protein fouling of uf membranes: Causes and consequences. Journal of Membrane Science 52(2), 121–142 (1990)

    Article  MathSciNet  Google Scholar 

  • Osada, Y., Nakagawa, T. (eds.): Membrane Science and Technology. Marcel Dekker, Inc. (1992)

    Google Scholar 

  • Paris, J., Guichardon, P., Charbit, F.: Transport phenomena in ultrafiltration: a new two-dimensional model compared with classical models. Journal of Membrane Science 207(1), 43–58 (2002)

    Article  Google Scholar 

  • Prado, M., Roa, L., Palma, A., Milán, J.A.: A novel mathematical method based on urea kinetic modeling for computing the dialysis dose. Computer Methods and Programs in Biomedicine 74(2), 109–128 (2004)

    Article  Google Scholar 

  • Prado, M., Roa, L.M.: Combining dialysate and blood recirculation to boost uremic toxin removal: theory and simulation study. Artificial Organs 31(12), 895–901 (2007)

    Article  Google Scholar 

  • Prado, M., Roa, L.M., Palma, A., Milán, J.A.: Double target comparison of blood-side methods for measuring the hemodialysis dose. Kidney International 68(6), 2863–2876 (2005a)

    Article  Google Scholar 

  • Prado, M., Roa, L.M., Palma, A., Milán, J.A.: Improving hollow fiber dialyzer efficiency with a recirculating dialysate system I: Theory and applicability. Ann. Biomed. Eng. 33(5), 642–655 (2005b)

    Article  Google Scholar 

  • Prado, M., Roa, L.M., Palma, A., Milán, J.A.: Improving hollow fiber dialyzer efficiency with a recirculating dialysate system II: Comparison against two-chamber dialysis systems. Ann. Biomed. Eng. 33(11), 1595–1606 (2005c)

    Article  Google Scholar 

  • Roa, L.M., Prado, M.: The role of urea kinetic modeling in assessing the adequacy of dialysis. Crit. Rev. Biomed. Eng. 32(5-6), 461–539 (2004)

    Article  Google Scholar 

  • Sargent, J., Gotch, F.: Mathematic modeling of dialysis therapy. Kidney Int. suppl. 10, S2–S10 (1980)

    Google Scholar 

  • Staverman, A.J.: The theory of measurement of osmotic pressure. Rec. Trav. Chim. 70(4), 344–352 (1951)

    Article  Google Scholar 

  • Stiller, S., Mann, H.: A model of solute transport through the dialyzer membrane in hemodiafiltration. Seminars in Dialysis 12(1), S76–S80 (1999)

    Google Scholar 

  • Vaussenat, F., Bosc, J.Y., LeBlanc, M., Canaud, B.: Data acquisition system for dialysis machines. A model for membrane hydraulic permeability. Asaio Journal 43(6), 910–915 (1997)

    Article  Google Scholar 

  • Werynski, A., Malchesky, P., Lewandowski, J., et al.: Theoretical formulation of sieving coefficient evaluation for membrane plasma separation. Artif. Organs 9(3), 250–254 (1985)

    Article  Google Scholar 

  • Werynski, A., Waniewski, J.: Theoretical description of mass transport in medical membrane devices. Artif. Organs 19(5), 420–427 (1995)

    Article  Google Scholar 

  • Wolf, A.V., Laird, N.M., Henry, R.R.: Artificial kidney function: Kinetics of hemodialysis. J. Clin. Invest. 30(10), 1062–1070 (1951)

    Article  Google Scholar 

  • Wupper, A., Dellanna, F., Baldamus, C.A., Woermann, D.: Local transport processes in high-flux hollow fiber dialyzers. Journal of Membrane Science 131(1-2), 181–193 (1997)

    Article  Google Scholar 

  • Wupper, A., Woermann, D., Dellanna, F., Baldamus, C.A.: Retrofiltration rates in high-flux hollow fiber hemodialyzers: analysis of clinical data. Journal of Membrane Science 121(1), 109–116 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Prado-Velasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prado-Velasco, M. (2013). Flow Modeling of Hollow Fiber Dialyzers. In: Azar, A. (eds) Modelling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27458-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27458-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27457-2

  • Online ISBN: 978-3-642-27458-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics