Skip to main content

Optimal Operational Strategies for CO2 Emission Reduction in Sustainable Energy Systems

  • Chapter
  • First Online:
  • 1432 Accesses

Part of the book series: Energy Systems ((ENERGY))

Abstract

In the energy sector, the new millennium is bringing unprecedented challenges related to global warming, which are representing a major driver for change in energy system planning, design and operation. In this context, and on the basis of the state-of-the-art literature in the field, the aim of this chapter is to illustrate the fundamental aspects relevant to energy system operation in the presence of CO2 emission-related issues and constraints, with an indicative time horizon from 1 day to 1 week. Within this time frame, the role of CO2 emissions in optimal operational strategies to exploit the energy system equipment is opportunely identified, illustrated and modelled. In particular, this chapter discusses a number of optimisation problem formulations set up in different frameworks, with the aim of highlighting their characteristics and at the same time synthesising the main relevant points of the studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Meunier F (2002) Co- and tri-generation contribution to climate change control. Appl Therm Eng 22(6):703–718

    Article  Google Scholar 

  2. Cârdu M, Baica M (2002) Regarding the greenhouse gas emissions of thermopower plants. Energy Convers Manage 43(16):2135–2144

    Article  Google Scholar 

  3. Minciuc E, Le Corre O, Athanasovici V, Tazerout M (2003) Fuel savings and CO2 emissions for trigeneration systems. Appl Therm Eng 23:1333–1346

    Article  Google Scholar 

  4. Chicco G, Mancarella P (2008) Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: models and indicators. Energy 33(3):410–417

    Article  Google Scholar 

  5. United States Environmental Protection Agency (2008) Catalogue of CHP technologies (Online). http://www.epa.gov/

  6. Dincer I (1999) Environmental impacts of energy. Energy Policy 27(14):845–854

    Article  Google Scholar 

  7. Kreider JF (2001) Handbook of heating, ventilation and air conditioning. CRC Press, Boca Raton

    Google Scholar 

  8. Krauter S, Rüther R (2004) Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. Renew Energy 29:345–355

    Article  Google Scholar 

  9. Luickx PJ, Delarue ED, D’haeseleer WD (2009) Effect of the generation mix on wind power introduction. IET Renew Power Gen 3:267–278

    Article  Google Scholar 

  10. Pehnt M (2006) Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew Energy 31(1):55–71

    Article  Google Scholar 

  11. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  Google Scholar 

  12. Horlock JH (1997) Cogeneration-combined heat and power (CHP). Krieger, Malabar

    Google Scholar 

  13. Wu DW, Wang RZ (2006) Combined cooling, heating and power: a review. Prog Energy Combust Sci 32:459–495

    Article  Google Scholar 

  14. Chicco G, Mancarella P (2009) Distributed multi-generation: a comprehensive view. Renew Sustain Energy Rev 13:535–551

    Article  Google Scholar 

  15. Mancarella P, Chicco G (2009) Distributed multi-generation systems: energy models and analyses. Nova, New York

    Google Scholar 

  16. Mancarella P (2009) Cogeneration systems with electric heat pumps: energy-shifting properties and equivalent plant modelling. Energy Convers Manage 50:1991–1999

    Article  Google Scholar 

  17. Mancarella P, Chicco G (2008) Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: analysis techniques and application cases. Energy 33(3):418–430

    Article  Google Scholar 

  18. Chicco G, Mancarella P (2008) A unified model for energy and environmental performance assessment of natural gas-fueled poly-generation systems. Energy Convers Manage 49(8):2069–2077

    Article  Google Scholar 

  19. Chicco G, Mancarella P (2009) Matrix modelling of small-scale trigeneration systems and application to operational optimization. Energy 34(3):261–273

    Article  Google Scholar 

  20. Mancarella P, Chicco G (2010) Distributed cogeneration: modeling of environmental benefits and impact. In: Gaonkar DN (ed) Distributed generation. In-Teh, Vukovar, Chapter 1

    Google Scholar 

  21. Cardona E, Piacentino A (2005) Cogeneration: a regulatory framework toward growth. Energy Policy 33:2100–2111

    Article  Google Scholar 

  22. Chicco G, Mancarella P (2007) Trigeneration primary energy saving evaluation for energy planning and policy development. Energy Policy 35(12):6132–6144

    Article  Google Scholar 

  23. Voorspools KR, D’haeseleer WD (2003) The impact of the implementation of cogeneration in a given energetic context. IEEE Trans Energy Convers 18(1):135–141

    Article  Google Scholar 

  24. Tsikalakis AG, Hatziargyriou ND (2007) Environmental benefits of distributed generation with and without emissions trading. Energy Policy 35(6):3395–3409

    Article  Google Scholar 

  25. Hawkes AD (2010) Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy 38:5977–5987

    Article  Google Scholar 

  26. Marbe Å, Harvey S (2005) The role of policy instruments for promoting combined heat and power production with low CO2 emissions in district heating systems. Int J Energy Res 29(6):511–537

    Article  Google Scholar 

  27. Karlsson M, Gebremedhin A, Klugman S, Henning D, Moshfegh B (2009) Regional energy system optimization – potential for a regional heat market. Appl Energy 86(4):441–451

    Article  Google Scholar 

  28. Chicco G, Mancarella P (2007) Exploiting small-scale cogeneration in energy-related markets. In: Proceedings of the IEEE PowerTech 2007, Lausanne, 1–5 July 2007. The IEEE, Piscataway, paper 319

    Google Scholar 

  29. Conde Lázaro E, Ramos Millán A, Reina Peral P (2006) Analysis of cogeneration in the present energy framework. Fuel Process Technol 87:163–168

    Article  Google Scholar 

  30. Gulli F (2006) Social choice, uncertainty about external costs and trade-off between intergenerational environmental impacts: the emblematic case of gas-based energy supply decentralization. Ecol Econ 57(2):282–305

    Article  Google Scholar 

  31. Siddiqui AS, Marnay C, Edwards JL, Firestone R, Ghosh S, Stadler M (2005) Effects of carbon tax on microgrid combined heat and power adoption. J Energy Eng 131(3):2–25

    Article  Google Scholar 

  32. Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35(9):4444–4454

    Article  Google Scholar 

  33. European Commission (2003) Emission trading system (Online). http://ec.europa.eu/environment/climat/emission/index%2Den.html

  34. Aki H, Oyama T, Tsuji K (2006) Analysis of energy service systems in urban areas and their CO2 mitigations and economic impacts. Appl Energy 83(10):1076–1088

    Article  Google Scholar 

  35. Praetorius B, Schumacher K (2009) Greenhouse gas mitigation in a carbon constrained world: the role of carbon capture and storage. Energy Policy 37:5081–5093

    Article  Google Scholar 

  36. Cohen SM, Rochelle GT, Webber ME (2008) Turning CO2 capture on and off in response to electric grid demand: a baseline analysis of emissions and economics. In: Proceedings of energy sustainability 2008, Jacksonville, 10–14 Aug 2008, paper 54296

    Google Scholar 

  37. Chalmers H, Chen C, Lucquiaud M, Gibbins J, Strbac G (2006) Initial evaluation of carbon capture plant flexibility. In: Proceedings of the 8th international conference on greenhouse gas control technologies. Elsevier, Trondheim

    Google Scholar 

  38. Newell RG, Pizer WA (2008) Carbon mitigation costs for the commercial building sector: discrete-continuous choice analysis of multifuel energy demand. Resour Energy Econ 30(4):527–539

    Article  Google Scholar 

  39. Voorspools KR, D’haeseleer WD (2000) The influence of the instantaneous fuel mix for electricity generation on the corresponding emissions. Energy 25(11):1119–1138

    Article  Google Scholar 

  40. Abido MA (2003) Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans Power Syst 18(4):1529–1537

    Article  Google Scholar 

  41. Palanichamy C, Sundar Babu N (2008) Analytical solution for combined economic and emissions dispatch. Electr Power Syst Res 78:1129–1137

    Article  Google Scholar 

  42. Lindenberger D, Bruckner T, Morrison R, Groscurth HM, Kümmel R (2004) Modernization of local energy systems. Energy 29:245–256

    Article  Google Scholar 

  43. Willett K, Tomic J (2005) Vehicle to grid fundamentals: calculating capacity and net revenue. J Power Sources 144(1):268–279

    Article  Google Scholar 

  44. Haeseldonckx D, Peeters L, Helsen L, D’haeseleer W (2007) The impact of thermal storage on the operational behaviour of residential CHP facilities and the overall CO2 emissions. Renew Sustain Energy Rev 11(6):1227–1243

    Article  Google Scholar 

  45. Cormio C, Dicorato M, Minoia A, Trovato M (2003) A regional energy planning methodology including renewable energy sources and environmental constraint. Renew Sustain Energy Rev 7(2):99–130

    Article  Google Scholar 

  46. Makkonen S, Lahdelma R (2006) Non-convex power plant modelling in energy optimisation. Eur J Oper Res 171:1113–1126

    Article  MATH  Google Scholar 

  47. Gjengedal T (1996) Emission constrained unit commitment (ECUC). IEEE Trans Energy Convers 11(1):132–138

    Article  Google Scholar 

  48. Arroyo JM, Conejo AJ (2000) Optimal response of a thermal unit to an electricity spot market. IEEE Trans Power Syst 15(3):1098–1104

    Article  Google Scholar 

  49. Voorspools K, Peersman I, D’haeseleer W (2005) A comparative analysis of energy and CO2 taxes on the primary energy mix for electricity generation. Int J Energy Res 29:879–890

    Article  Google Scholar 

  50. Lindenberger D, Bruckner T, Groscurth HM, Kümmel R (2000) Optimization of solar district heating systems: seasonal storage, heat pumps and cogeneration. Energy 25:591–608

    Article  Google Scholar 

  51. Rong A, Lahdelma R (2007) CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization. Eur J Oper Res 176(3):1874–1895

    Article  MathSciNet  MATH  Google Scholar 

  52. Kockar I, Conejo AJ, McDonald JR (2009) Influence of the emissions trading scheme on generation scheduling. Electr Power Energy Syst 31:465–473

    Article  Google Scholar 

  53. Chattopadhyay D (1995) An energy brokerage system with emission trading and allocation of cost savings. IEEE Trans Power Syst 10(4):1939–1945

    Article  Google Scholar 

  54. Bertoldi P, Huld T (2006) Tradable certificates for renewable electricity and energy savings. Energy Policy 34(2):212–222

    Article  Google Scholar 

  55. Belton V, Stewart TJ (2002) Multiple criteria decision analysis. An integrated approach. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  56. Hwang CL, Yoon K (1981) Multiple attribute decision making. Methods and applications: a state-of-the-art survey, Springer-Verlag, Berlin, Germany

    Google Scholar 

  57. Shukla PK, Deb K (2007) On finding multiple pareto-optimal solutions using classical and evolutionary generating methods. Eur J Oper Res 181:1630–1652

    Article  MATH  Google Scholar 

  58. Hindsberger M, Ravn HF (2001) Multiresolution modelling of hydro-thermal systems. In: Proceedings of the power industry computer applications (PICA 2001), Sydney

    Google Scholar 

  59. Karlsson K, Meibom P (2008) Optimal investment paths for future renewable based energy systems-using the optimisation model Balmorel. Int J Hydrogen Energy 33(7):1777–1787

    Article  Google Scholar 

  60. Bruckner T, Groscurth HM, Kummel R (1997) Competition and synergy between energy technologies in municipal energy systems. Energy 22(10):1005–1014

    Article  Google Scholar 

  61. Bruckner T, Morrison R, Handley C, Patterson M (2003) High-resolution modeling of energy-services supply systems using DEECO: overview and application to policy development. Ann Oper Res 121(1–4):151–180

    Article  MathSciNet  MATH  Google Scholar 

  62. Siddiqui AS, Firestone R, Ghosh S, Stadler M, Edwards JL, Marnay C (2003) Distributed energy resources customer adoption modeling with combined heat and power applications, Report LBNL-52718

    Google Scholar 

  63. Zhou N, Gao W, Firestone R, Stadler M, Marnay C, Nishida M (2006) An analysis of the DER adoption climate in Japan using optimization results for prototype buildings with U.S. comparisons. Energy Build 38(12):1423–1433

    Article  Google Scholar 

  64. Grohnheit PE (1991) Economic interpretation of the EFOM model. Energy Econ 13(2):143–152

    Article  Google Scholar 

  65. Lund H, Münster E (2006) Integrated energy systems and local energy markets. Energy Policy 34(10):1152–1160

    Article  Google Scholar 

  66. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32(6):912–919

    Article  MathSciNet  Google Scholar 

  67. Lund H (2009) EnergyPLAN: advanced energy system analysis computer model. http://energy.plan.aau.dk/

  68. Dufo-López R, Bernal-Agustín JL (2005) Design and control strategies of PV-diesel systems using genetic algorithms. Sol Energy 79(1):33–46

    Article  Google Scholar 

  69. National Renewable Energy Laboratory (NREL) (2006) HOMER: the optimization model for distributed power. http://www.nrel.gov/homer/

  70. Henning D (1997) MODEST: an energy-system optimisation model applicable to local utilities and countries. Energy 22(12):1135–1150

    Article  Google Scholar 

  71. Henning D, Amiri S, Holmgren K (2006) Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility. Eur J Oper Res 175:1224–1247

    Article  MATH  Google Scholar 

  72. Nagata Y (2005) Quantitative analysis of CO2 emissions reductions through introduction of stationary-type PEM-FC systems in Japan. Energy 30:2636–2653

    Article  Google Scholar 

  73. Haeseldonckx D, D’haeseleer W (2008) The environmental impact of decentralised generation in an overall system context. Renew Sustain Energy Rev 12:437–454

    Article  Google Scholar 

  74. Remme U, Goldstein GA, Schellmann U, Schlenzig C (2001) MESAP/TIMES-advanced decision support for energy and environmental planning. In: Chamoni P, Leisten R, Martin A, Minnemann J, Stadtler H (eds) Operations research proceedings 2001 – Selected papers of the international conference on operations research (OR 2001), 3–5 Sep 2001. Springer, Duisburg, pp 59–66. www.uni-duisburg.de/or2001

  75. Yusta JM, Khodr HM, Urdaneta AJ (2007) Optimal pricing of default customers in electrical distribution systems: effect behavior performance of demand response models. Electr Power Syst Res 77(5–6):548–558

    Article  Google Scholar 

  76. Li H, Nalim R, Haldi PA (2006) Thermal-economic optimization of a distributed multi-generation energy system – a case study of Beijing. Appl Therm Eng 26(7):709–719

    Article  Google Scholar 

  77. Aki H, Yamamoto S, Ishikawa Y, Kondoh J, Maeda T, Yamaguchi H, Murata A, Ishii I (2006) Operational strategies of networked fuel cells in residential homes. IEEE Trans Power Syst 21(3):1405–1414

    Article  Google Scholar 

  78. Wang JJ, Jing YY, Zhang CF (2010) Optimization of capacity and operation for CCHP system by genetic algorithm. Appl Energy 87:1325–1335

    Article  Google Scholar 

  79. Mago PJ, Chamra LM, Hueffed A (2009) A review on energy, economical, and environmental benefits of the use of CHP systems for small commercial buildings for the North American climate. Int J Energy Res 33(14):1252–1265

    Article  Google Scholar 

  80. Mago PJ, Chamra LM (2009) Analysis and optimization of CCHP systems based on energy, economical, and environmental considerations. Energy Build 41:1099–1106

    Article  Google Scholar 

  81. Rong A, Lahdelma R (2005) An efficient linear programming model and optimization algorithm for trigeneration. Appl Energy 82:40–63

    Article  Google Scholar 

  82. Fumo N, Mago PJ, Chamra LM (2009) Emission operational strategy for combined cooling, heating, and power systems. Appl Energy 86:2344–2350

    Article  Google Scholar 

  83. Tsay MT (2003) Applying the multi-objective approach for operation strategy of cogeneration systems under environmental constraints. Electr Power Energy Syst 25:219–226

    Article  Google Scholar 

  84. Chicco G, Mancarella P (2008) Optimal operational strategies for multi-generation systems. In: Proceedings of the power systems computational conference, Glasgow, 14–18 July 2008, paper 528

    Google Scholar 

  85. Chinese D, Meneghetti A (2005) Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy. Appl Energy 82(3):228–254

    Article  Google Scholar 

  86. Ren H, Gao W (2010) A MILP model for integrated plan and evaluation of distributed energy systems. Appl Energy 87:1001–1014

    Article  Google Scholar 

  87. Schwaegerl C, Tao L, Mancarella P, Strbac G (2010) A multi-objective optimization approach for assessment of technical, commercial and environmental performance of microgrids. Eur Trans Electr Power. doi:10.1002/etep.472

  88. Spitzley DV, Keoleian GA, Baron SG (2007) Life cycle energy and environmental analysis of a microgrid power pavilion. Int J Energy Res 31:1–13

    Article  Google Scholar 

  89. Curti V, von Spakovsky MR, Favrat D (2000) An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace. Part I: methodology. Int J Therm Sci 39:721–730

    Article  Google Scholar 

  90. Curti V, Favrat D, von Spakovsky MR (2000) An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace. Part II: application. Int J Therm Sci 39:731–741

    Article  Google Scholar 

  91. Borchiellini R, Massardo AF, Santarelli M (2002) Carbon tax vs CO2 sequestration effects on environomic analysis of existing power plants. Energy Convers Manage 43:1425–1443

    Article  Google Scholar 

  92. Mavrotas G, Georgopoulou E, Mirasgedis S, Sarafidis Y, Lalas D, Hontou V, Gakis N (2007) An integrated approach for the selection of best available techniques (BAT) for the industries in the greater Athens area using multi-objective combinatorial optimization. Energy Econ 29:953–973

    Article  Google Scholar 

  93. Wang C, Larsson M, Ryman C, Grip CE, Wikström JO, Johnsson A, Engdahl J (2008) A model on CO2 emission reduction in integrated steelmaking by optimization methods. Int J Energy Res 32(12):1092–1106

    Article  Google Scholar 

  94. Aki H, Oyama T, Tsuji K (2003) Analysis of energy pricing in urban energy service systems considering a multiobjective problem of environmental and economic impact. IEEE Trans Power Syst 18(4):1275–1282

    Article  Google Scholar 

  95. Burer M, Tanaka K, Favrat D, Yamada K (2003) Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers. Energy 28(6):497–518

    Article  Google Scholar 

  96. Xia H, Koyama M, Leyland G, Kraines S (2004) A modularized framework for solving an economic-environmental power generation mix problem. Int J Energy Res 28(9):769–784

    Article  Google Scholar 

  97. Pelet X, Favrat D, Leyland G (2005) Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions. Int J Therm Sci 44(12):1180–1189

    Article  Google Scholar 

  98. Li H, Maréchal F, Burer M, Favrat D (2006) Multi-objective optimization of an advanced combined cycle power plant including CO2 separation options. Energy 31(15):3117–3134

    Article  Google Scholar 

  99. Weber C, Maréchal F, Favrat D, Kraines S (2006) Optimization of an SOFC-based decentralized polygeneration system for providing energy services in an office-building in Tokyo. Appl Therm Eng 26(13):1409–1419

    Article  Google Scholar 

  100. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  101. Konak A, Coir DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Safe 91:992–1007

    Article  Google Scholar 

  102. Bernal-Agustín JL, Dufo-López R, Rivas-Ascaso DM (2006) Design of isolated hybrid systems minimizing costs and pollutant emissions. Renew Energy 31:2227–2244

    Article  Google Scholar 

  103. Kavvadias KC, Maroulis ZB (2010) Multi-objective optimization of a trigeneration plant. Energy Policy 38:945–954

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Mancarella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mancarella, P., Chicco, G. (2012). Optimal Operational Strategies for CO2 Emission Reduction in Sustainable Energy Systems. In: Zheng, Q., Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds) Handbook of CO₂ in Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27431-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27431-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27430-5

  • Online ISBN: 978-3-642-27431-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics