Skip to main content

CO2 Capture: Integration and Overall System Optimization in Power Applications

  • Chapter
  • First Online:

Part of the book series: Energy Systems ((ENERGY))

Abstract

It is generally accepted that CO2 capture and storage technologies (CCS) will play an essential role in the reduction of greenhouse gases emission in a medium-large term. Despite the research efforts devoted to the development of more efficient capture processes, two of the main challenges of CCS are the efficiency penalty caused by the CO2 separation, compression and conditioning, and the economic cost. Consequently, the minimizations of the energy requirements and/or the CO2 avoided cost are the research priorities for the future implementation of CCS technology.

The objective of this chapter is to describe some examples of minimizing the CO2 avoided cost in several applications of CCS. The first example illustrates a preliminary analysis for the selection of the appropriate option to overcome the energy requirement for regeneration in an amine scrubbing CCS application. The second case presents a problem for minimizing CCS cost depending on several operational variables in an emerging and promising option for CO2 capture. The last example shows a formal optimization problem with a different objective function, minimizing the cost penalties associated to CO2 compression. It is concluded that optimization will provided essential information to select the adequate process layout and the proper operational variables supported by the concepts of the Second Law Analysis of Thermodynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAPEX:

Capital costs

CB:

Carbonator

CCS:

Carbon capture and storage

CFB:

Circulating fluidized bed

Ci:

Cost indexes

CL:

Calciner

COE:

Cost of electricity

CO2kWh−1 :

Specific CO2 emissions

EC:

Energy cost

EP:

Electricity production

ERi :

Energy requirements

F:

Annuity factor

GT:

Gas turbine

HRSG:

Heat recovery steam generator

IPCC:

Intergovernmental Panel on Climate Change

K:

Sorbent deactivation constant

MEA:

Monoetalonamine

N:

Number of sorbent cycles

NG:

Natural gas

OF:

Objective function

OPEX:

Operation and maintenance costs

XN :

Average sorbent activity

Xr :

Residual sorbent activity

Capture:

Capture system process (with the power plant)

Max:

Maximum value

Ref:

Reference case (usually power plant without capture system)

sb:

Steam bleeding

References

  1. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) (2005) Special report on carbon dioxide capture and storage. Intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  2. European Technology Platform for Zero Emission Fossil Fuel Power Plants (2007) EU demonstration programme for CO2 capture and storage (CCS). ZEP’s proposal. European Technology Platform for zero emission fossil fuel power plants (ZEP)

    Google Scholar 

  3. Stangeland A (2007) A model for the CO2 capture potential. Int J Greenhouse Gas Control 1:418–429

    Article  Google Scholar 

  4. Sama DA (1195) The use of the second law of thermodynamics in process design. J Energy Resour Technol 117:179–185

    Article  Google Scholar 

  5. Sama DA, Qian S, Gaggioli R (1989) A common-sense second law approach for improving process efficiencies. In: Proceedings of the international symposium on thermodynamics analysis and improvement of energy systems, Beijing, pp 520–531

    Google Scholar 

  6. Leites IL, Sama DA, Lior N (2003) The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes. Energy 28:55–97

    Article  Google Scholar 

  7. Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, Marsland RH (1982) A user guide on process integration for the efficient use of energy. IChemE, Rugby

    Google Scholar 

  8. Hall SG, Linnhoff B (1994) Targeting for furnace systems using pinch analysis. Ind Eng Chem Res 33:3187–3195

    Article  Google Scholar 

  9. Aroonwilas A, Veawab A (2007) Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants: implications for emission and energy management. Int J Greenhouse Gas Control 1:143–150

    Article  Google Scholar 

  10. Darde V, Thomsen K, van Well WJM, Stenby EH (2010) Chilled ammonia process for CO2 capture. Int J Greenhouse Gas Control 4:131–136

    Article  Google Scholar 

  11. Puxty G, Rowland R, Attalla M (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chem Eng Sci 65:915–922

    Article  Google Scholar 

  12. Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT (2010) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenhouse Gas Control 4:119–124

    Article  Google Scholar 

  13. Cullinane JT, Rochelle GT (2005) Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide. Fluid Phase Equilibria 227:197–213

    Article  Google Scholar 

  14. Chapel D, Ernst J, Mariz C (1999) Recovery of CO2 from flue gases: commercial trends. Presented at the Canadian Society of Chemical Engineers annual meeting, Saskatoon

    Google Scholar 

  15. Desideri U, Paolucci A (1999) Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manage 40:1899–1915

    Article  Google Scholar 

  16. Mimura T, Shimojo S, Suda T, Iijima M, Mitsuoka S (1995) Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant. Energy Convers Manage 36:397–400

    Article  Google Scholar 

  17. Mimura T, Simayoshi H, Suda T, Iijima M, Mituoka S (1997) Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system. Energy Convers Manage 38:S57–S62

    Article  Google Scholar 

  18. IEA Greenhouse Gas R&D Programme (2004) Improvement in power generation with post-combustion capture of CO2. Report no. PH4/33

    Google Scholar 

  19. Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF (2007) CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethalonamine. Int J Greenhouse Gas Control 1:37–46

    Article  Google Scholar 

  20. Peters MS, Timmerhaus K, West RE (2003) Plant design and economics for chemical engineers. McGraw-Hill, New York

    Google Scholar 

  21. Chemical Engineering (2010) Updating the CE plant cost index. Chem Eng 60:52

    Google Scholar 

  22. Rao A, Rubin E, Berkenpas M (2004) An integrating modelling framework for carbon management technology. US Department of Energy. http://www.cmu.edu/epp/iecm/documentation/tech_04.pdf

  23. Fischer K, Beitler C, Rueter C, Searcy K, Rochelle G, Jessim M (2005) Integrating MEA regeneration with CO2 compression and peaking to reduce capture costs. US Department of Energy. http://www.trimeric.com/report%20660905.pdf

  24. Stoll HG, Smith RW, Tomlinson LO (1994) Performance and economic considerations of repowering steam power plants. GE Industrial & Power Systems Report GER-3644D

    Google Scholar 

  25. Aspen Plus 12.1 (2003) User guide, Aspen Technology, Inc., Cambridge, MA

    Google Scholar 

  26. Bozzuto CR, Nsakala N, Liljedahl GN, Palkes M, Marion JL (2001) Engineering feasibility of CO2 capture on an existing US coal-fired power plant, Final report, vol 1. ALSTOM Power Inc.

    Google Scholar 

  27. Romeo LM, Bolea I, Escosa JM (2008) Integration of power plant and amine scrubbing to reduce CO2 capture costs. Appl Thermal Eng 28:1039–1046

    Article  Google Scholar 

  28. Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manage 44:3073–3091

    Article  Google Scholar 

  29. Alie C (2004) Simulation and optimisation of a coal-fired power plant with integrated CO2 capture using MEA scrubbing. Master thesis, University of Waterloo

    Google Scholar 

  30. Abanades JC (2002) The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chem Eng J 90:303–306

    Article  Google Scholar 

  31. Abanades JC, Alvarez D (2003) Conversion limits in the reaction of CO2 with lime. Energy Fuel 17:308

    Article  Google Scholar 

  32. Lee DK (2004) An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem Eng J 10:71–77

    Article  Google Scholar 

  33. Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K (1999) A twin fluid-bed reactor for removal of CO2 from combustion processes. Trans IChemE 77-A:62

    Article  Google Scholar 

  34. Wang C, Jic L, Tan Y, Anthony EJ (2008) Carbonation of fly ash in oxy-fuel CFB combustion. Fuel 87:1108–1114

    Article  Google Scholar 

  35. Romeo LM, Lara Y, Lisbona P, Escosa JM (2009) Optimizing make-up flow in a CO2 capture system using CaO. Chem Eng J 147:252–258

    Article  Google Scholar 

  36. Rodriguez N, Alonso M, Grasa GS, Abanades JC (2007) Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO. Chem Eng J 138:148–154

    Article  Google Scholar 

  37. Lisbona P, MartÚnez A, Lara Y, Romeo LM (2010) Integration of Carbonate CO2 Capture Cycle and Coal-Fired Power Plants. A Comparative Study for Different Sorbents. Energy Fuels 24:728–736

    Article  Google Scholar 

  38. Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454

    Article  Google Scholar 

  39. Abanades JC, Grasa G, Alonso M, Rodriguez N, Anthony EJ, Romeo LM (2007) Cost structure of a postcombustion CO2 capture system using CaO. Environ Sci Technol 41:5523–5527

    Article  Google Scholar 

  40. Romeo LM, Abanades JC, Escosa JM, Pano J, Giménez A, Sanchez-Biezma A, Ballesteros JC (2008) Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants. Energy Convers Manage 49:2809–2814

    Article  Google Scholar 

  41. Aspelund A, Jordal K (2007) Gas conditioning – the interface between CO2 capture and transport. Int J Greenhouse Gas Control 1:343–354

    Article  Google Scholar 

  42. Heggum G, Weydahl T, Roald W, Mølnvik M, Austegard A (2005) CO2 conditioning and transportation. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Burlington

    Google Scholar 

  43. Aspelund A, Mølnvik MJ, De Koeijer G (2006) Ship transport of CO2 – technical solutions and analysis of costs, energy utilization, energy efficiency and CO2 emissions. Chem Eng Res Des (Official Journal of the European Federation of Chemical Engineering: Part A) 84-A9:847–855

    Google Scholar 

  44. Romeo LM, Bolea I, Lara Y, Escosa JM (2009) Optimization of intercooling compression in CO2 capture systems. Appl Thermal Eng 29:1744–1751

    Article  Google Scholar 

  45. Duc NH, Chauvy F, Herri JM (2007) CO2 capture by hydrate crystallization – a potential solution for gas emission of steelmaking industry. Energy Convers Manage 48:1313–1322

    Article  Google Scholar 

  46. Olsommer B (1998) Méthode d’optimisation thermoéconomique appliqué aux centrales d’incinération d’ordures à cogénération avec appoint énergétique. Ph.D. dissertation, Swiss Federal Institute of Technology of Lausanne, Lausanne

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Romeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romeo, L.M. (2012). CO2 Capture: Integration and Overall System Optimization in Power Applications. In: Zheng, Q., Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds) Handbook of CO₂ in Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27431-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27431-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27430-5

  • Online ISBN: 978-3-642-27431-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics