Skip to main content

Antisense-Mediated Reduction of Eukaryotic Noncoding RNAs

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The human genome has been demonstrated to be transcribed largely as noncoding RNAs. Accumulating evidence suggests important roles for many noncoding RNAs in different biological processes as well as in human diseases. Thus, it is important to be able to manipulate the expression of the noncoding RNAs, both for biological functionalization of these RNAs and for treatment of diseases related to noncoding RNAs. In this review, we summarize the approaches for reducing expression of noncoding RNAs in different eukaryotic organisms and the insights provided into the functions of these noncoding RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen TA, Von Kaenel S, Goodrich JA et al (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  • Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790

    Article  PubMed  CAS  Google Scholar 

  • Beltran M, Puig I, Pena C et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–769

    Article  PubMed  CAS  Google Scholar 

  • Bennett CF (2006) Pharmacological properties of 2′-O-methoxyethyl-modified oligonucleotides. In: Crooke ST (ed) Antisense drug technology—principles, strategies, and applications. CRC, Boca Raton, FL, pp 273–304

    Google Scholar 

  • Bertrand E, Fournier MJ (2004) The snoRNPs and related machines: ancient devices that mediate maturation of rRNA and other RNAs. In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, TX, pp 225–261

    Google Scholar 

  • Black DL, Chabot B, Steitz JA (1985) U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42:737–750

    Article  PubMed  CAS  Google Scholar 

  • Borovjagin AV, Gerbi SA (1999) U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J Mol Biol 286:1347–1363

    Article  PubMed  CAS  Google Scholar 

  • Brookheart RT, Michel CI, Listenberger LL et al (2009) The non-coding RNA gadd7 is a regulator of lipid-induced oxidative and endoplasmic reticulum stress. J Biol Chem 284:7446–7454

    Article  PubMed  CAS  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Chiu YL, Ali A, Chu CY et al (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11:1165–1175

    Article  PubMed  CAS  Google Scholar 

  • Citti L, Rainaldi G (2005) Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther 5:11–24

    Article  PubMed  CAS  Google Scholar 

  • Clemson CM, Hutchinson JN, Sara SA et al (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    Article  PubMed  CAS  Google Scholar 

  • Coughlin DJ, Pleiss JA, Walker SC et al (2008) Genome-wide search for yeast RNase P substrates reveals role in maturation of intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci USA 105:12218–12223

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST, Vickers T, Lima W et al (2006) Mechanisms of antisense drug action, an introduction. In: Crooke ST (ed) Antisense drug technology—principles, strategies, and application. CRC, Roca Raton, FL

    Google Scholar 

  • Cruz JA, Westhof E (2011) Sequence-based identification of 3D structural modules in RNA with RMDetect. Nat Methods 8:513–21

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Malone CD, Zhou R et al (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    Article  PubMed  CAS  Google Scholar 

  • Dominski Z, Marzluff WF (2007) Formation of the 3′ end of histone mRNA: getting closer to the end. Gene 396:373–390

    Article  PubMed  CAS  Google Scholar 

  • Ender C, Krek A, Friedlander MR et al (2008) A human snoRNA with microRNA-like functions. Mol Cell 32:519–528

    Article  PubMed  CAS  Google Scholar 

  • Esakova O, Krasilnikov AS (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–1747

    Article  PubMed  CAS  Google Scholar 

  • Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T et al (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Bi C, Clark BS et al (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Friend K, Lovejoy AF, Steitz JA (2007) U2 snRNP binds intronless histone pre-mRNAs to facilitate U7-snRNP-dependent 3′ end formation. Mol Cell 28:240–252

    Article  PubMed  CAS  Google Scholar 

  • Galasso M, Elena Sana M, Volinia S (2010) Non-coding RNAs: a key to future personalized molecular therapy? Genome Med 2:12

    Article  PubMed  CAS  Google Scholar 

  • Gerbi SA, Borovjagin AV (2004) Pre-ribosomal RNA processing in multicellular organisms. In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, TX, pp 170–198

    Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  • Gill T, Cai T, Aulds J et al (2004) RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 24:945–953

    Article  PubMed  CAS  Google Scholar 

  • Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Kumar A (2010) Dyskeratosis congenita. Adv Exp Med Biol 685:215–219

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Hury A, Ziporen Y et al (2010) Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs. Nucleic Acids Res 38:7236–7247

    Article  PubMed  CAS  Google Scholar 

  • Hasler J, Strub K (2006a) Alu elements as regulators of gene expression. Nucleic Acids Res 34:5491–5497

    Article  PubMed  CAS  Google Scholar 

  • Hasler J, Strub K (2006b) Alu RNP and Alu RNA regulate translation initiation in vitro. Nucleic Acids Res 34:2374–2385

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PG, Morris KV (2008) RNA and transcriptional modulation of gene expression. Cell Cycle 7:602–607

    Article  PubMed  CAS  Google Scholar 

  • Hirota K, Miyoshi T, Kugou K et al (2008) Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456:130–134

    Article  PubMed  CAS  Google Scholar 

  • Hulstrand AM, Schneider PN, Houston DW (2010) The use of antisense oligonucleotides in Xenopus oocytes. Methods 51:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ideue T, Hino K, Kitao S et al (2009) Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA 15:1578–1587

    Article  PubMed  CAS  Google Scholar 

  • Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10:833–844

    Article  PubMed  CAS  Google Scholar 

  • Janowski BA, Younger ST, Hardy DB et al (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3:166–173

    Article  PubMed  CAS  Google Scholar 

  • Jarrous N, Reiner R (2007) Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 35:3519–3524

    Article  PubMed  CAS  Google Scholar 

  • Kettenberger H, Eisenfuhr A, Brueckner F et al (2006) Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs. Nat Struct Mol Biol 13:44–48

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • King TH, Liu B, McCully RR et al (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425–435

    Article  PubMed  CAS  Google Scholar 

  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    Article  PubMed  CAS  Google Scholar 

  • Kishore S, Khanna A, Zhang Z et al (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19:1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Koller E, Vincent TM, Chappell A et al (2011) Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 39:4795–4807

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  • Kwek KY, Murphy S, Furger A et al (2002) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9:800–805

    PubMed  CAS  Google Scholar 

  • Lanet E, Delannoy E, Sormani R et al (2009) Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21:1762–1768

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Clayton DA (1998) Initiation of mitochondrial DNA replication by transcription and R-loop processing. J Biol Chem 273:30614–30621

    Article  PubMed  CAS  Google Scholar 

  • Li LC, Okino ST, Zhao H et al (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 103:17337–17342

    Article  PubMed  CAS  Google Scholar 

  • Li S, Nosrati M, Kashani-Sabet M (2007) Knockdown of telomerase RNA using hammerhead ribozymes and RNA interference. Methods Mol Biol 405:113–131

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Xu YX, Michaeli S (2002) The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA. RNA 8:237–246

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Liu Q, Michaeli S (2003) Small nucleolar RNA interference induced by antisense or double-stranded RNA in trypanosomatids. Proc Natl Acad Sci USA 100:7521–7526

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Liu Q, Fournier MJ (2007) rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Mol Cell 28:965–977

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Vickers TA, Guo S et al (2011) Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Res 39:e13

    Article  PubMed  CAS  Google Scholar 

  • Lima W, Wu H, Crooke ST (2008) The RNase H mechanism. In: Crooke ST (ed) Antisense drug technology—principles, strategies, and applications. CRC, Boca Raton, FL, pp 47–74

    Google Scholar 

  • Lin R, Maeda S, Liu C et al (2007) A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 26:851–858

    Article  PubMed  CAS  Google Scholar 

  • Liu WM, Chu WM, Choudary PV et al (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765

    Article  PubMed  CAS  Google Scholar 

  • Lundblad EW, Altman S (2010) Inhibition of gene expression by RNase P. Nat Biotechnol 27:212–221

    CAS  Google Scholar 

  • Ma M, Benimetskaya L, Lebedeva I et al (2000) Intracellular mRNA cleavage induced through activation of RNase P by nuclease-resistant external guide sequences. Nat Biotechnol 18:58–61

    Article  PubMed  CAS  Google Scholar 

  • Mallardo M, Poltronieri P, D’Urso OF (2008) Non-protein coding RNA biomarkers and differential expression in cancers: a review. J Exp Clin Cancer Res 27:19

    Article  PubMed  CAS  Google Scholar 

  • Mansfield JH, Harfe BD, Nissen R et al (2004) MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Maraia RJ, Driscoll CT, Bilyeu T et al (1993) Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol 13:4233–4241

    PubMed  CAS  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    Article  PubMed  CAS  Google Scholar 

  • Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–574

    Article  PubMed  CAS  Google Scholar 

  • Martianov I, Ramadass A, Serra Barros A et al (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670

    Article  PubMed  CAS  Google Scholar 

  • Martin AN, Li Y (2007) RNase MRP RNA and human genetic diseases. Cell Res 17:219–226

    PubMed  CAS  Google Scholar 

  • McKusick VA, Eldridge R, Hostetler JA et al (1965) Dwarfism in the Amish II. Cartilage-hair hypoplasia. Bull Johns Hopkins Hosp 116:285–326

    PubMed  CAS  Google Scholar 

  • Mercatanti A, Rainaldi G, Mariani L et al (2002) A method for prediction of accessible sites on an mRNA sequence for target selection of hammerhead ribozymes. J Comput Biol 9:641–653

    Article  PubMed  CAS  Google Scholar 

  • Michel CI, Holley CL, Scruggs BS et al (2011) Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab 14:33–44

    Article  PubMed  CAS  Google Scholar 

  • Michels AA, Fraldi A, Li Q et al (2004) Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 23:2608–2619

    Article  PubMed  CAS  Google Scholar 

  • Montanaro L, Calienni M, Bertoni S et al (2010) Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res 70:4767–4777

    Article  PubMed  CAS  Google Scholar 

  • Moxon S, Jing R, Szittya G et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Mulhbacher J, St-Pierre P, Lafontaine DA (2010) Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol 10:551–556

    Article  PubMed  CAS  Google Scholar 

  • Nagai K, Oubridge C, Kuglstatter A et al (2003) Structure, function and evolution of the signal recognition particle. EMBO J 22:3479–3485

    Article  PubMed  CAS  Google Scholar 

  • Orom UA, Derrien T, Beringer M et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  PubMed  CAS  Google Scholar 

  • Pelczar P, Filipowicz W (1998) The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol 18:4509–4518

    PubMed  CAS  Google Scholar 

  • Peng S, Chen LL, Lei XX et al (2011) Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells 29:496–504

    Article  PubMed  CAS  Google Scholar 

  • Phylactou LA, Tsipouras P, Kilpatrick MW (1998) Hammerhead ribozymes targeted to the FBN1 mRNA can discriminate a single base mismatch between ribozyme and target. Biochem Biophys Res Commun 249:804–810

    Article  PubMed  CAS  Google Scholar 

  • Place RF, Li LC, Pookot D et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

    Article  PubMed  CAS  Google Scholar 

  • Ploner A, Ploner C, Lukasser M et al (2009) Methodological obstacles in knocking down small noncoding RNAs. RNA 15:1797–1804

    Article  PubMed  CAS  Google Scholar 

  • Rand TA, Petersen S, Du F et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  PubMed  CAS  Google Scholar 

  • Rinke J, Appel B, Blocker H et al (1984) The 5′-terminal sequence of U1 RNA complementary to the consensus 5′ splice site of hnRNA is single-stranded in intact U1 snRNP particles. Nucleic Acids Res 12:4111–4126

    Article  PubMed  CAS  Google Scholar 

  • Robb GB, Brown KM, Khurana J et al (2005) Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12:133–137

    Article  PubMed  CAS  Google Scholar 

  • Russell AG, Schnare MN, Gray MW (2004) Pseudouridine-guide RNAs and other Cbf5p-associated RNAs in Euglena gracilis. RNA 10:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Samarsky DA, Ferbeyre G, Bertrand E et al (1999) A small nucleolar RNA:ribozyme hybrid cleaves a nucleolar RNA target in vivo with near-perfect efficiency. Proc Natl Acad Sci USA 96:6609–6614

    Article  PubMed  CAS  Google Scholar 

  • Samji T (2009) PIWI, piRNAs, and germline stem cells: what's the link? Yale J Biol Med 82:121–124

    PubMed  CAS  Google Scholar 

  • Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4:e1000224

    Article  PubMed  CAS  Google Scholar 

  • Sasaki YT, Ideue T, Sano M et al (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 106:2525–2530

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JC, Younger ST, Nguyen NB et al (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15:842–848

    Article  PubMed  CAS  Google Scholar 

  • Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol Cell 26:603–609

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1994) Split genes and RNA splicing. Cell 77:805–815

    Article  PubMed  CAS  Google Scholar 

  • Shimayama T, Nishikawa F, Nishikawa S et al (1993) Nuclease-resistant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucleic Acids Res 21:2605–2611

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Gurha P, Tran EJ et al (2004) Sequential 2′-O-methylation of archaeal pre-tRNATrp nucleotides is guided by the intron-encoded but trans-acting box C/D ribonucleoprotein of pre-tRNA. J Biol Chem 279:47661–47671

    Article  PubMed  CAS  Google Scholar 

  • Siomi MC, Miyoshi T, Siomi H (2010) piRNA-mediated silencing in Drosophila germlines. Semin Cell Dev Biol 21:754–759

    Article  PubMed  CAS  Google Scholar 

  • Spiluttini B, Gu B, Belagal P et al (2010) Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells. J Cell Sci 123:2085–2093

    Article  PubMed  CAS  Google Scholar 

  • Sproat BS (1996) Synthetic catalytic oligonucleotides based on the hammerhead ribozyme. In: Eckstein F, Lilley DMJ (eds) Catalytic RNA, vol 10. Springer, Berlin, pp 265–281

    Chapter  Google Scholar 

  • Su J, Baigude H, McCarroll J et al (2011) Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res 39:e38

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Sunwoo H, Dinger ME, Wilusz JE et al (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

    Article  PubMed  CAS  Google Scholar 

  • Svoboda P (2007) Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther 9:248–257

    PubMed  CAS  Google Scholar 

  • Swayze EE, Bhat B (2006) The medicinal chemistry of oligonucleotides. In: Crooke ST (ed) Antisense drug technology—principles, strategies, and applications. CRC, Boca Raton, FL, pp 143–182

    Google Scholar 

  • Taft RJ, Pang KC, Mercer TR et al (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    Article  PubMed  CAS  Google Scholar 

  • Tam OH, Aravin AA, Stein P et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Zhang B, Wu T et al (2009) Transcriptional inhibition of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol 10:12

    Article  PubMed  CAS  Google Scholar 

  • Torres AG, Fabani MM, Vigorito E et al (2011) MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection. RNA 17:933–943

    Article  PubMed  CAS  Google Scholar 

  • Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  PubMed  CAS  Google Scholar 

  • Tycowski KT, Shu MD, Steitz JA (1994) Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266:1558–1561

    Article  PubMed  CAS  Google Scholar 

  • Tycowski KT, Shu MD, Steitz JA (1996) A mammalian gene with introns instead of exons generating stable RNA products. Nature 379:464–466

    Article  PubMed  CAS  Google Scholar 

  • Uliel S, Liang XH, Unger R et al (2004) Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions. Int J Parasitol 34:445–454

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Tschudi C (1990) Permeable trypanosome cells as a model system for transcription and trans-splicing. Nucleic Acids Res 18:3319–3326

    Article  PubMed  CAS  Google Scholar 

  • Val R, Wyszko E, Valentin C et al (2011) Organelle trafficking of chimeric ribozymes and genetic manipulation of mitochondria. Nucleic Acids Res 39:9262–9274

    Article  PubMed  CAS  Google Scholar 

  • Vickers TA, Koo S, Bennett CF et al (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118

    Article  PubMed  CAS  Google Scholar 

  • Vitali P, Basyuk E, Le Meur E et al (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169:745–753

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Luhrmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    Article  PubMed  CAS  Google Scholar 

  • Williams AE (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci 65:545–562

    Article  PubMed  CAS  Google Scholar 

  • Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932

    Article  PubMed  CAS  Google Scholar 

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Xu Y, Liao CP et al (2010) Reprogramming murine telomerase rapidly inhibits the growth of mouse cancer cells in vitro and in vivo. Mol Cancer Ther 9:438–449

    Article  PubMed  CAS  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2011) B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2:45–49

    Article  PubMed  Google Scholar 

  • Yuan Y, Hwang ES, Altman S (1992) Targeted cleavage of mRNA by human RNase P. Proc Natl Acad Sci USA 89:8006–8010

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA et al (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Cullen BR (2002) RNA interference in human cells is restricted to the cytoplasm. RNA 8:855–860

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lian Z, Padden C, Gerstein MB et al (2009) A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113:2526–2534

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to those whose paper could not be cited due to space limitations. We thank Donna Parrett for excellent editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-hai Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liang, Xh., Vickers, T.A., Crooke, S.T. (2012). Antisense-Mediated Reduction of Eukaryotic Noncoding RNAs. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_8

Download citation

Publish with us

Policies and ethics