Skip to main content

CRISPR: A Bacterial Immunity System Based on Small RNAs

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1836 Accesses

Abstract

CRISPR is the acronym for a recently discovered defense system against the invasion of foreign genetic elements, such as transposons, phages, or plasmids. Originally observed during genome sequencing of bacteria and archaea, the CRISPR system has been proven to confer adaptive and inheritable immunity against foreign nucleic acid. Although quite different in the components and mechanisms involved, it resembles the RNA interference phenomenon of eukaryotes (RNAi), an important control and defense tool with widespread applications in research and medical developments. The CRISPR system consists of genomic clusters of short repeat sequences flanking unique spacer sequences of similar length (CRISPR = Clustered Regularly Interspaced Short Palindromic Repeats). The spacer sequences derive from the DNA of previous invaders and are taken up in the bacterial CRISPR array by mechanisms not yet solved. In case of a new infection, CRISPR arrays are transcribed and the RNA is processed and assembled into ribonucleoprotein complexes, which target the DNA of the invader through base pair complementarity. The targeted DNA is then inactivated by hydrolytic destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agari Y, Sakamoto K, Tamakoshi M et al (2010) Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J Mol Biol 395:270–281

    Article  PubMed  CAS  Google Scholar 

  • Al-Attar S, Westra ER, van der Oost J et al (2011) Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem 392:277–289

    Article  PubMed  CAS  Google Scholar 

  • Babu M, Beloglazova N, Flick R et al (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502

    Article  PubMed  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  PubMed  CAS  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  PubMed  CAS  Google Scholar 

  • Chibani-Chennoufi S, Bruttin A, Dillmann ML et al (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186:3677–3686

    Article  PubMed  CAS  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  PubMed  CAS  Google Scholar 

  • Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  PubMed  CAS  Google Scholar 

  • Dorman CJ (2007) H-NS, the genome sentinel. Nat Rev Microbiol 5:157–161

    Article  PubMed  CAS  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  PubMed  CAS  Google Scholar 

  • Gudbergsdottir S, Deng L, Chen Z et al (2011) Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol Microbiol 79:35–49

    Article  PubMed  CAS  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF et al (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60

    Article  PubMed  Google Scholar 

  • Hale C, Kleppe K, Terns RM et al (2008) Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Hale CR, Zhao P, Olson S et al (2009) RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell 139:945–956

    Article  PubMed  CAS  Google Scholar 

  • Haurwitz RE, Jinek M, Wiedenheft B et al (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • He J, Deem MW (2010) Heterogeneous diversity of spacers within CRISPR (clustered regularly interspaced short palindromic repeats). Phys Rev Lett 105:128102

    Article  PubMed  Google Scholar 

  • Jansen R, Embden JD, Gaastra W et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  PubMed  CAS  Google Scholar 

  • Jore MM, Lundgren M, van Duin E et al (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Struct Mol Biol 18:529–536

    Article  CAS  Google Scholar 

  • Karginov FV, Hannon GJ (2010) The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 37:7–19

    Article  PubMed  CAS  Google Scholar 

  • Lambert NJ, Gu SG, Zahler AM (2011) The conformation of microRNA seed regions in native microRNPs is prearranged for presentation to mRNA targets. Nucleic Acids Res 39:4827–4835

    Article  PubMed  CAS  Google Scholar 

  • Lillestøl RK, Redder P, Garrett RA et al (2006) A putative viral defence mechanism in archaeal cells. Archaea 2:59–72

    Article  PubMed  Google Scholar 

  • Lillestøl RK, Shah SA, Brugger K et al (2009) CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 72:259–272

    Article  PubMed  Google Scholar 

  • Lintner NG, Frankel KA, Tsutakawa SE et al (2011) The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J Mol Biol 405:939–955

    Article  PubMed  CAS  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 106:4629–4634

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7

    Article  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  PubMed  CAS  Google Scholar 

  • Manica A, Zebec Z, Teichmann D et al (2011) In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol 80:481–491

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010a) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010b) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–571

    Article  PubMed  CAS  Google Scholar 

  • Medina-Aparicio L, Rebollar-Flores JE, Gallego-Hernandez AL et al (2011) The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS and LRP in Salmonella enterica serovar Typhi. J Bacteriol 193:2396–2407

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  • Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497

    Article  PubMed  CAS  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J et al (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740

    Article  PubMed  CAS  Google Scholar 

  • Navarre WW, Porwollik S, Wang Y et al (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236–238

    Article  PubMed  CAS  Google Scholar 

  • Navarre WW, McClelland M, Libby SJ et al (2007) Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21:1456–1471

    Article  PubMed  CAS  Google Scholar 

  • Nonaka G, Blankschien M, Herman C et al (2006) Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789

    Article  PubMed  CAS  Google Scholar 

  • Oshima T, Ishikawa S, Kurokawa K et al (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 13:141–153

    Article  PubMed  CAS  Google Scholar 

  • Palmer KL, Gilmore MS (2010) Multidrug-resistant enterococci lack CRISPR-cas. MBio 1:e00227–10

    Article  PubMed  Google Scholar 

  • Parker JS, Parizotto EA, Wang M et al (2009) Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol Cell 33:204–214

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rodriguez R, Haitjema C, Huang Q et al (2011) Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol 79:584–599

    Article  PubMed  CAS  Google Scholar 

  • Pougach K, Semenova E, Bogdanova E et al (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 77:1367–1379

    Article  PubMed  CAS  Google Scholar 

  • Pul U, Wurm R, Arslan Z et al (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512

    Article  PubMed  CAS  Google Scholar 

  • Semenova E, Jore MM, Datsenko KA et al (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA 108:10098–10103

    Article  PubMed  CAS  Google Scholar 

  • Shah SA, Hansen NR, Garrett RA (2009) Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem Soc Trans 37:23–28

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Yamamoto K, Ishihama A (2009) Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. J Bacteriol 191:4562–4571

    Article  PubMed  CAS  Google Scholar 

  • Shinkai A, Kira S, Nakagawa N et al (2007) Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J Bacteriol 189:3891–3901

    Article  PubMed  CAS  Google Scholar 

  • Sinkunas T, Gasiunas G, Fremaux C et al (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Skennerton CT, Angly FE, Breitbart M et al (2011) Phage encoded H-NS: a potential achilles heel in the bacterial defence system. PLoS One 6:e20095

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Kunin V, Hugenholtz P (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186

    Article  PubMed  CAS  Google Scholar 

  • Stern A, Keren L, Wurtzel O et al (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340

    Article  PubMed  CAS  Google Scholar 

  • van der Oost J, Jore MM, Westra ER et al (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407

    Article  PubMed  Google Scholar 

  • Wade JT, Roa DC, Grainger DC et al (2006) Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 13:806–814

    Article  PubMed  CAS  Google Scholar 

  • Westra ER, Pul U, Heidrich N et al (2010) H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77:1380–1393

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, Lander GC, Zhou K et al (2011a) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–489

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, van Duijn E, Bultema J et al (2011b) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci USA 108:10092–10097

    Article  PubMed  CAS  Google Scholar 

  • Young RF 3rd (2008) Molecular biology. Secret weapon. Science 321:922–923

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, R., Pul, Ü. (2012). CRISPR: A Bacterial Immunity System Based on Small RNAs. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_6

Download citation

Publish with us

Policies and ethics