Skip to main content

Targeting Non-coding RNAs for Cancer Therapy

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1769 Accesses

Abstract

Cancer remains one of the leading causes of morbidity and mortality, with limited progress in the development of cancer cell-specific, targeted, long-term therapeutic strategies. In the past decade, non-coding RNAs have emerged as novel and key modulators of cellular gene expression influencing both the transcriptional and posttranscriptional output. Seminal contributions of non-coding RNAs during development and disease have been described in many eukaryotic species including humans. To date, several different classes of non-coding RNA have been identified and can be broadly categorized mainly based on their size, structural characteristics, and proteins involved in their biogenesis. Recently, microRNAs, a small non-coding RNA species, and various long non-coding RNAs have been implicated and studied widely in multiple aspects of cancer initiation, progression, and metastasis. Understanding the mechanistic aspects of non-coding RNAs might hold the key, not only to decipher what goes awry in cancer but also most importantly to devise novel targeted therapeutic strategies in the coming years. In this chapter, we will provide a brief overview of non-coding RNAs, with emphasis on those RNAs whose levels are modulated during carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariel I, Lustig O, Schneider T et al (1995) The imprinted H19 gene as a tumor marker in bladder carcinoma. Urology 45:335–338

    Article  PubMed  CAS  Google Scholar 

  • Ariel I, Miao HQ, Ji XR et al (1998) Imprinted H19 oncofetal RNA is a candidate tumour marker for hepatocellular carcinoma. Mol Pathol 51:21–25

    Article  PubMed  CAS  Google Scholar 

  • Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12:429–442

    Article  PubMed  CAS  Google Scholar 

  • Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67

    Article  PubMed  CAS  Google Scholar 

  • Babiarz JE, Ruby JG, Wang Y et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785

    Article  PubMed  CAS  Google Scholar 

  • Bejerano G, Pheasant M, Makunin I et al (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Berteaux N, Lottin S, Monte D et al (2005) H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 280:29625–29636

    Article  PubMed  CAS  Google Scholar 

  • Bitko V, Musiyenko A, Shulyayeva O et al (2005) Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11:50–55

    Article  PubMed  CAS  Google Scholar 

  • Brosnan CA, Voinnet O (2009) The long and the short of noncoding RNAs. Curr Opin Cell Biol 21:416–425

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Liu CG, Ferracin M et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12:215–229

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ et al (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    Article  PubMed  CAS  Google Scholar 

  • Cazalla D, Yario T, Steitz JA (2010) Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328:1563–1566

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Yang YL, Jensen MP et al (2011) The experience of and coping with lumbopelvic pain among pregnant women in Taiwan. Pain Med 12:846–853

    Article  PubMed  Google Scholar 

  • Cheng J, Guo JM, Xiao BX et al (2011) piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta 412:1621–1625

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Deng H, Xiao B et al (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315:12–17

    Article  PubMed  CAS  Google Scholar 

  • Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Lou Y, Zhang X et al (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 44:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Malone CD, Zhou R et al (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Perez SV, Ferguson DO, Wang C et al (2006) A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics 174:1115–1133

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050

    Article  PubMed  CAS  Google Scholar 

  • Elmen J, Lindow M, Schutz S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Article  PubMed  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  PubMed  CAS  Google Scholar 

  • Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Fellig Y, Ariel I, Ohana P et al (2005) H19 expression in hepatic metastases from a range of human carcinomas. J Clin Pathol 58:1064–1068

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Ganesan S, Silver DP, Greenberg RA et al (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405

    Article  PubMed  CAS  Google Scholar 

  • Ganesan S, Richardson AL, Wang ZC et al (2005) Abnormalities of the inactive X chromosome are a common feature of BRCA1 mutant and sporadic basal-like breast cancer. Cold Spring Harb Symp Quant Biol 70:93–97

    Article  PubMed  CAS  Google Scholar 

  • Garzon R, Heaphy CE, Havelange V et al (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114:5331–5341

    Article  PubMed  CAS  Google Scholar 

  • Grelier G, Voirin N, Ay AS et al (2009) Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 101:673–683

    Article  PubMed  CAS  Google Scholar 

  • Grochola LF, Greither T, Taubert H et al (2008) The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death. Br J Cancer 99:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Li Y, Liu Y et al (2010a) Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin (Shanghai) 42:224–229

    Article  CAS  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS et al (2010b) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed  CAS  Google Scholar 

  • Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300

    Article  PubMed  CAS  Google Scholar 

  • Hibi K, Nakamura H, Hirai A et al (1996) Loss of H19 imprinting in esophageal cancer. Cancer Res 56:480–482

    PubMed  CAS  Google Scholar 

  • Hu Z, Liang J, Wang Z et al (2009) Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat 30:79–84

    Article  PubMed  CAS  Google Scholar 

  • Huang KC, Rao PH, Lau CC et al (2002) Relationship of XIST expression and responses of ovarian cancer to chemotherapy. Mol Cancer Ther 1:769–776

    PubMed  CAS  Google Scholar 

  • Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    Article  PubMed  CAS  Google Scholar 

  • Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson JN, Ensminger AW, Clemson CM et al (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim AF, Weirauch U, Thomas M et al (2011) MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 71:5214–5224

    Article  PubMed  CAS  Google Scholar 

  • Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Zhang H, Tang Q et al (2011) Expression of HIWI in human hepatocellular carcinoma. Cell Biochem Biophys 61:53–58

    Article  PubMed  CAS  Google Scholar 

  • Karreth FA, Tay Y, Perna D et al (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395

    Article  PubMed  CAS  Google Scholar 

  • Karube Y, Tanaka H, Osada H et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115

    Article  PubMed  CAS  Google Scholar 

  • Kasinski AL, Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11:849–864

    Article  PubMed  CAS  Google Scholar 

  • Katzman S, Kern AD, Bejerano G et al (2007) Human genome ultraconserved elements are ultraselected. Science 317:915

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • Kleer CG, Cao Q, Varambally S et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100:11606–11611

    Article  PubMed  CAS  Google Scholar 

  • Kogo R, Shimamura T, Mimori K et al (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326

    Article  PubMed  CAS  Google Scholar 

  • Kota SK, Balasubramanian S (2010) Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today 15:733–740

    Article  PubMed  CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Roychowdhury-Saha M, Black C et al (2011) Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett 585:671–676

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Sun Y, Guo J et al (2006) Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer 118:1922–1929

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Reinhardt F, Pan E et al (2010a) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Young J, Prabhala H et al (2010b) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256

    PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  PubMed  CAS  Google Scholar 

  • Martello G, Rosato A, Ferrari F et al (2010) A MicroRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  PubMed  CAS  Google Scholar 

  • Matouk IJ, DeGroot N, Mezan S et al (2007) The H19 non-coding RNA is essential for human tumor growth. PLoS One 2:e845

    Article  PubMed  CAS  Google Scholar 

  • Matouk IJ, Mezan S, Mizrahi A et al (2010) The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta 1803:443–451

    Article  PubMed  CAS  Google Scholar 

  • Medema RH, Burgering BM (2007) The X factor: skewing X inactivation towards cancer. Cell 129:1253–1254

    Article  PubMed  CAS  Google Scholar 

  • Merritt WM, Lin YG, Han LY et al (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359:2641–2650

    Article  PubMed  CAS  Google Scholar 

  • Pageau GJ, Hall LL, Lawrence JB (2007) BRCA1 does not paint the inactive X to localize XIST RNA but may contribute to broad changes in cancer that impact XIST and Xi heterochromatin. J Cell Biochem 100:835–850

    Article  PubMed  CAS  Google Scholar 

  • Palliser D, Chowdhury D, Wang QY et al (2006) An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439:89–94

    Article  PubMed  CAS  Google Scholar 

  • Pampalakis G, Diamandis EP, Katsaros D et al (2010) Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem 43:324–327

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  PubMed  CAS  Google Scholar 

  • Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893–904

    Article  PubMed  CAS  Google Scholar 

  • Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Qiao D, Zeeman AM, Deng W et al (2002) Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 21:3988–3999

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Siomi MC (2010) Small RNA-mediated quiescence of transposable elements in animals. Dev Cell 19:687–697

    Article  PubMed  CAS  Google Scholar 

  • Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Murase K, Kato J et al (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26:431–442

    Article  PubMed  CAS  Google Scholar 

  • Scaruffi P, Stigliani S, Moretti S et al (2009) Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 9:441

    Article  PubMed  CAS  Google Scholar 

  • Schmidt LH, Spieker T, Koschmieder S et al (2011) The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol 6:1984–1992

    Article  PubMed  Google Scholar 

  • Schmitz KJ, Helwig J, Bertram S et al (2011) Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J Clin Pathol 64:529–535

    Article  PubMed  CAS  Google Scholar 

  • Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:e1002071

    Article  PubMed  CAS  Google Scholar 

  • Schuettengruber B, Cavalli G (2009) Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136:3531–3542

    Article  PubMed  CAS  Google Scholar 

  • Silver DP, Dimitrov SD, Feunteun J et al (2007) Further evidence for BRCA1 communication with the inactive X chromosome. Cell 128:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Siomi MC, Sato K, Pezic D et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258

    Article  PubMed  CAS  Google Scholar 

  • Sirchia SM, Ramoscelli L, Grati FR et al (2005) Loss of the inactive X chromosome and replication of the active X in BRCA1-defective and wild-type breast cancer cells. Cancer Res 65:2139–2146

    Article  PubMed  CAS  Google Scholar 

  • Sirchia SM, Tabano S, Monti L et al (2009) Misbehaviour of XIST RNA in breast cancer cells. PLoS One 4:e5559

    Article  PubMed  CAS  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  • Sun G, Wang Y, Sun L et al (2011) Clinical significance of Hiwi gene expression in gliomas. Brain Res 1373:183–188

    Article  PubMed  CAS  Google Scholar 

  • Tano K, Mizuno R, Okada T et al (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett 584:4575–4580

    Article  PubMed  CAS  Google Scholar 

  • Tay Y, Kats L, Salmena L et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357

    Article  PubMed  CAS  Google Scholar 

  • Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  PubMed  CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  PubMed  CAS  Google Scholar 

  • Tsang WP, Ng EK, Ng SS et al (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31:350–358

    Article  PubMed  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  PubMed  CAS  Google Scholar 

  • Welcsh PL, Lee MK, Gonzalez-Hernandez RM et al (2002) BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci USA 99:7560–7565

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Sharp JA, Kawahara M et al (2007) The XIST noncoding RNA functions independently of BRCA1 in X inactivation. Cell 128:977–989

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Yang M, Tian J et al (2011) MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int J Oncol 39:169–175

    PubMed  Google Scholar 

  • Yang R, Schlehe B, Hemminki K et al (2010) A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat 121:693–702

    Article  PubMed  Google Scholar 

  • Yang L, Lin C, Liu W et al (2011a) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147:773–788

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Zhou L, Wu LM et al (2011b) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18:1243–1250

    Article  PubMed  Google Scholar 

  • Yoshimizu T, Miroglio A, Ripoche MA et al (2008) The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA 105:12417–12422

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Ohsumi TK, Kung JT et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya K. Kota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kota, S.K., Balasubramanian, S. (2012). Targeting Non-coding RNAs for Cancer Therapy. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_24

Download citation

Publish with us

Policies and ethics