Skip to main content

Nucleic Acids as Therapeutics

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Gene therapy is a technique for correcting defective genes responsible for disease development. Nucleic acid-based molecules (deoxyribonucleic acid, complementary deoxyribonucleic acid, complete genes, ribonucleic acid, and oligonucleotides) are utilized as research tools within the broad borders of gene therapy and the emerging field of molecular medicine. Although most of the nucleic acid-based drugs are in early stages of clinical trials, these classes of compounds have emerged in recent years to yield extremely promising candidates for drug therapy to a wide range of diseases, including cancer, infectious diseases, diabetes, cardiovascular, inflammatory, and neurodegenerative diseases, cystic fibrosis, hemophilia, and other genetic disorders. Gene therapy may be classified into two types: somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients using gene therapy. This chapter summarizes deoxyribonucleic acid-based therapeutics, ribonucleic acid-based therapeutics, and gene transfer technologies. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers, and deoxyribonucleic acidzymes, while ribonucleic acid-based therapeutics includes ribonucleic acid aptamers, ribonucleic acid decoys, antisense ribonucleic acid, ribozymes, small interfering ribonucleic acid, and micro ribonucleic acid. This chapter also includes current status of gene therapy and recent developments in gene therapy research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarawal S, Tang JY (1992) GEM-91-an antisense oligonucleotide phosphorothioate as a therapeutic agent for AIDS. Antisense Res Dev 2:261–266

    Google Scholar 

  • Agarwal S, Kandimalla ER (2000) Antisense therapeutics: is it as simple as complementary base recognition? Mol Med Today 6:72–81

    Article  Google Scholar 

  • Aigner A, Juhl H, Malerczyk C et al (2001) Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumor cell proliferation. Oncogene 20:2101–2111

    Article  PubMed  CAS  Google Scholar 

  • Akhtar S, Hughes MD, Khan A (2000) The delivery of antisense therapeutics. Adv Drug Deliv Rev 44:3–21

    Article  PubMed  CAS  Google Scholar 

  • Albert MM, Francesca S, Aric AP et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  Google Scholar 

  • Alt M, Ring R, Hofschneider PH et al (1995) Specific inhibition of hepatitis C viral gene expression by antisense phosphorothioate oligodeoxynucleotides. Hepatology 22:707–717

    PubMed  CAS  Google Scholar 

  • Alvarez RD, Barns MN, Gomez-Navarro J (2000a) A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clin Cancer Res 6:3081–3087

    PubMed  CAS  Google Scholar 

  • Alvarez RD, Gomez-Navarro J, Wang M (2000b) Adenoviral mediated suicide gene therapy for ovarian cancer. Mol Ther 2:524–530

    Article  PubMed  CAS  Google Scholar 

  • Anderson WF (1992) Human gene therapy. Science 256:808–813

    Article  PubMed  CAS  Google Scholar 

  • Anderson WF (1998) Human gene therapy. Nature (Lond) 392:25–30

    Article  CAS  Google Scholar 

  • Anil A (2003) Undercover genes slip into the brain. http://www.newscientist.com/section/science-news/. 22 Mar 2003

  • Audouy S, Molema G, De Leij L et al (2000) Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile cell type and complex stability. J Gene Med 2:465–476

    Article  PubMed  CAS  Google Scholar 

  • Azad RF, Driver VB, Tanaka K et al (1993) Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 37:1945–1954

    Article  PubMed  CAS  Google Scholar 

  • Baekelandt V, De Strooper B, Nuttin B et al (2000) Gene therapeutic strategies for neurodegenerative diseases. Curr Opin Mol 2:540–554

    CAS  Google Scholar 

  • Baker BF (2001) The role of antisense oligonucleotides in the wave of genomic information. Nucleosides Nucleotides Nucleic Acids 20:397–399

    Article  PubMed  CAS  Google Scholar 

  • Baltimore DP (1988) Intracellular immunization. Nature 335:395–397

    Article  PubMed  CAS  Google Scholar 

  • Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81:179–183

    Article  PubMed  CAS  Google Scholar 

  • Ben H (2007) Doctors test gene therapy to treat blindness. http://www.reuters.com/article/scienceNews/idUSL016653620070501?/. 1 May 2007

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Bertrand JR, Pottier M, Vekris A et al (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 296:1000–1004

    Article  PubMed  CAS  Google Scholar 

  • Bett AJ, Prevec L, Graham FL (1993) Packaging capacity, and stability of human adenovirus type 5 vectors. J Virol 67:5911–5921

    PubMed  CAS  Google Scholar 

  • Bob H (2003) Gene therapy may switch off Huntington’s. http://www.newscientist.com/section/science-news/. 13 Mar 2003

  • Borchard G (2001) Chitosans for gene delivery. Adv Drug Deliv Rev 52:145–150

    Article  PubMed  CAS  Google Scholar 

  • Bordier B, Helena C, Barr PJ et al (1992) In vitro effects of antisense oligonucleotides on human immunodeficiency virus type 1 reverses transcription. Nucleic Acids Res 20:1999–2006

    Article  Google Scholar 

  • Bordignon C, Notarangilo LD, Nobili N (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270:470–475

    Article  PubMed  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimin. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR, Joyce GF (1994) DNA enzyme that cleaves RNA. Trends Biotechnol 1:223–229

    CAS  Google Scholar 

  • Bunnel BA, Morgan RA (1996) Gene therapy for HIV infection. Drugs Today 32:09–224

    Google Scholar 

  • Burke JM (1996) Hairpin ribozyme: current status and future prospects. Biochem Soc Trans 24:608–615

    PubMed  CAS  Google Scholar 

  • Byrnes AP, Rusby JE, Wood MJ (1995) Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Campagno D, Lampe JN, Bourget C et al (1999) Antisense oligonucleotides containing modified bases inhibit in vitro translation of Leishmania amazonensis mRNAs by invading the mini-exon hairpin. J Biol Chem 274:8191–8198

    Article  Google Scholar 

  • Caplen NJ (2004) Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther 11:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Caplen NJ, Alton EW, Middleton PG (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1:39–46

    Article  PubMed  CAS  Google Scholar 

  • Carpenter DE, Stevens JG (1996) Long term expression of a foreign gene from a unique position in the latent herpes simplex virus genome. Hum Gene Ther 7:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Chaloin L, Lehmann MJ, Sczakiel G et al (2002) Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 30:4001–4008

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain JS (2002) Gene therapy of muscular dystrophy. Hum Mol Genet 11:2355–2362

    Article  PubMed  CAS  Google Scholar 

  • Clemens PR, Kochanek S, Sunada Y (1996) In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther 3:965–972

    PubMed  CAS  Google Scholar 

  • Compton SH, Mecklenbeck S, Mejia JE (2000) Stable integration of large (>100 kb) PAC constructs in HaCa T keratinocytes using an integrin-targeting peptide delivery system. Gene Ther 7:1600–1607

    Article  PubMed  CAS  Google Scholar 

  • Cone RD, Mulligan RC (1984) High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc Natl Acad Sci USA 81:6349–6353

    Article  PubMed  CAS  Google Scholar 

  • Cowsert LM, Fox MC, Zon G et al (1993) In vitro evaluation of phosphorothioate oligonucleotides targeted to the E2 mRNA of papillomavirus: potential treatment for the genital warts. Antimicrob Agents Chemother 37:171–177

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (1998a) An overview of progress in antisense therapeutics. Antisense Nucleic Acid Drug Dev 8:115–122

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (1998b) Vitravene another piece in the mosaic. Antisense Nucleic Acid Drug Dev 8:vii–v3

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (1999a) Molecular mechanisms of antisense drugs. Biochem Biophys Acta 1489:31–43

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (1999b) Molecular mechanisms of antisense drugs: human RNaseH. Antisense Nucleic Acid Drug Dev 9:377–379

    CAS  Google Scholar 

  • Danny P (2002) Subtle gene therapy tackles blood disorder. http://www.newscientist.com/section/science-news/. 11 Oct 2002

  • de Saultrait VR, Lozach P-Y, Altmeyer R et al (2002) DNA aptamers derived from HIV-1 RNaseH inhibitors are strong anti-integrase agents. J Mol Biol 324:195–203

    Article  CAS  Google Scholar 

  • Dean NM, McKay R, Condon TP et al (1994) Inhibition of protein kinase C-α expression in human A549 cells by antisense oligonucleotides inhibits induction of intracellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J Biol Chem 269:16416–16424

    PubMed  CAS  Google Scholar 

  • Denli AM, Tops BBJ, Plasterk RHA et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  • Dokka S, Toledo D, Shi X et al (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17:521–525

    Article  PubMed  CAS  Google Scholar 

  • Dong JY, Fang PD, Frizzel RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7:2101–2112

    Article  PubMed  CAS  Google Scholar 

  • Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  PubMed  CAS  Google Scholar 

  • Dunbar CE, Kohn DB, Shiffman R (1998) Retroviral transfer of the glucoceribrosidase gene into CD34+ cells from patients with Goucher disease: in vivo detection of transduced cells without myeloblation. Hum Gen Ther 9:2629–2640

    Article  CAS  Google Scholar 

  • Earnshaw DJ, Gait MJ (1997) Progress toward the structure and therapeutic use of the hairpin ribozyme. Antisense Nucleic Acid Drug Dev 7:403–411

    Article  PubMed  CAS  Google Scholar 

  • Ehsan A, Mann MJ, Dell’Acqua G et al (2001) Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J Thorac Cardiovasc Surg 121:714–722

    Article  PubMed  CAS  Google Scholar 

  • Ellison KE, Bisphoric NH, Webster KA (1996) Fusigenic liposome-mediated DNA transfer into cardiac myocytes. J Mol Cell Cardiol 28:1385–1399

    Article  PubMed  CAS  Google Scholar 

  • Emma Y (2002) ‘Miracle’ gene therapy trial halted. http://www.newscientist.com/section/science-news/. 3 Oct 2002

  • Eyetech Study Group (2002) Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22:143–152

    Article  Google Scholar 

  • Fattal E, Dellattre J, Dubernet C et al (1999) Liposomes for the delivery of nucleotides and oligonucleotides. STP Pharma Sci 9:383–390

    CAS  Google Scholar 

  • Fattal E, Dubernet C, Couvrur P (2001) Liposome-based formulations for the delivery of oligonucleotids. STP Pharma Sci 11:31–44

    CAS  Google Scholar 

  • Felgner PL, Gadek TR, Holm M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Felgner JH, Kumar R, Sridhar CN (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561

    PubMed  CAS  Google Scholar 

  • Filion MC, Philips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329:345–356

    Article  PubMed  CAS  Google Scholar 

  • Fillion P, Desjardins A, Sayasith K et al (2001) Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid-liposome encapsulated antisense oligonucleotides. Biochim Biophys Acta 1515:44–54

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fisher KJ, Jooss K, Alston J (1997) Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3:306–312

    Article  PubMed  CAS  Google Scholar 

  • Freimark BD, Blzinger HP, Florack VJ (1998) Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J Immunol 160:4580–4586

    PubMed  CAS  Google Scholar 

  • Fujji S, Huang S, Fong TC (2000) Induction of melanoma-associated antigen systemic immunity upon intratumoral delivery of interferon-gamma retroviral vector in melanoma patients. Cancer Gene Ther 7:1220–1230

    Article  Google Scholar 

  • Fynan EF, Webster RG, Fuller DH (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 90:11478–11482

    Article  PubMed  CAS  Google Scholar 

  • Galanis E, Russell S (2001) Cancer gene therapy clinical trials: lessons for the future. Br J Cancer 85:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Garton KJ, Ferri N, Raines EW (2002) Efficient expression of exogenous genes in primary vascular cells using IRES-based retroviral vectors. Biotechniques 32:830–843

    PubMed  CAS  Google Scholar 

  • Ge Q, McManus MT, Nguyen T et al (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA 100:2718–2723

    Article  PubMed  CAS  Google Scholar 

  • Gerviax A, Li X, Kraus G et al (1997) Multigene antivirus vectors inhibit divers human immunodeficiency virus type 1 clades. J Virol 71:3048–3053

    Google Scholar 

  • Gewirtz AM, Sokol DL, Ratajczak MZ (1998) Nucleic acid therapeutics: state of the art and future prospects. Blood 92:712–736

    PubMed  CAS  Google Scholar 

  • Godbey WT, Mikos AG (2001) Recent progress in gene delivery using non-viral transfer complexes. J Control Release 72:115–125

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Gosselin MA, Lee RJ (2002) Characterization of a novel diolein-based LPD II vector for gene delivery. J Control Release 83:121–132

    Article  PubMed  CAS  Google Scholar 

  • Hale SJ, Green NK (2002) Viral approaches to cancer gene therapy. Expert Opin Therapeut Patents 12:369–378

    Article  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  • Hampel A (1998) The hairpin ribozyme: discovery, two dimensional model, and development for gene therapy. Prog Nucleic Acid Res Mol Biol 58:1–39

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom K-H et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  PubMed  CAS  Google Scholar 

  • Hanecak R, Brown-Driver V, Fox MC et al (1996) Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J Virol 70:5203–5212

    PubMed  CAS  Google Scholar 

  • Heider H, Verca HB, Rusconi S et al (2000) Comparison of lipid-mediated, and adenoviral gene transfer in human monocyte-derived macrophages and COS-7 cells. Biotechniques 28:260–270

    PubMed  CAS  Google Scholar 

  • Hermonat PL, Quirk JG, Bishop BM (1997) The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors. FEBS Lett 407:78–84

    Article  PubMed  CAS  Google Scholar 

  • Hofland HEJ, Shephard L, Sullivan SM (1996) Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci USA 93:7305–7309

    Article  PubMed  CAS  Google Scholar 

  • Horner AA, van Uden JH, Jubeldia JM et al (2001) DNA-based immunotherapeutics for the treatment of allergic disease. Immunol Rev 179:102–118

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Viroonchatapan E (1999) Introduction. In: Huang L, Huang M-C, Wagner E (eds) Nonviral vectors for gene therapy. Academic Press, San Diego, CA, pp 3–22

    Google Scholar 

  • Hwang SJ, Davis ME (2001) Cationic polymers for gene delivery: designs for overcoming barriers to systemic administration. Curr Opin Mol Ther 3:183–191

    PubMed  CAS  Google Scholar 

  • Hyde SC, Southern KW, Gileadi U (2000) Repeat administration of DNA/liposome to the nasal epithelium of patients with cystic fibrosis. Gene Ther 7:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524

    Article  PubMed  CAS  Google Scholar 

  • James WB, Alexander JS, Susie SB et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    PubMed  CAS  Google Scholar 

  • Jenkins RG, Herrick SE, Meng QH (2000) An integrin-targeted non-viral vector for pulmonary gene therapy. Gene Ther 7:393–400

    Article  PubMed  CAS  Google Scholar 

  • Jennifer FW (2002) Murine gene therapy corrects symptoms of sickle cell disease. Scientist 16:36. http://www.the-scientist.com/2002/3/18

    Google Scholar 

  • Johnston SA, Talaat AM, McGuire MG (2002) Genetic immunization what’s in a name? Arch Med Res 33:325–329

    Article  PubMed  CAS  Google Scholar 

  • Jooss K, Yang Y, Fisher KJ (1998) Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 72:4212–4223

    PubMed  CAS  Google Scholar 

  • Kamiya H, Tsuchiya H, Yamazaki J et al (2001) Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev 52:153–164

    Article  PubMed  CAS  Google Scholar 

  • Kang S-H, Zirbes EL, Kole R (1999) Delivery of antisense oligonucleotides and plasmid DNA with various carrier agents. Antisense Nucleic Acid Drug Dev 9:497–505

    Article  PubMed  CAS  Google Scholar 

  • Katz SM, Tian L, Stepkowski SM et al (1997) Effect of ICAM-1/LFA-1 blockade on pancreatic islet allograft survival function, and early cytokine production. Transplant Proc. 29(1–2):748–749

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Roy I (2008) Therapeutic applications of aptamers. Expert Opin Investig Drugs 17:43–60

    Article  PubMed  CAS  Google Scholar 

  • Kaushik S, Namgung R, Kim WJ (2011) Polymers in small-interfering RNA delivery. Nucleic Acid Ther 21:133–147

    Google Scholar 

  • Khaw BA, da Silva J, Vural I et al (2001) Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J Control Release 75:199–210

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Yu SS, Park JS et al (1998) Construction of retroviral vectors with improved safety, gene expression, and versatility. J Virol 72:994–1004

    PubMed  CAS  Google Scholar 

  • Kinchington D, Galpin S, Jeroszewski J et al (1992) A comparison of gag, pol, and rev antisense oligodeoxynucleotides as inhibitors of HIV-1. Antiviral Res 17:53–62

    Article  PubMed  CAS  Google Scholar 

  • Kochanek S, Clemens PR, Mitani K (1996) A new adenoviral vector: replacement of viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 93:5731–5736

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Siniscalco M, Samulski RJ (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87:2211–2215

    Article  PubMed  CAS  Google Scholar 

  • Krauss WC, Park JW, Kirpotin DB et al (2000) Emerging antibody-based HER2 (ErbB-2/new) therapeutics. Breast Dis 11:113–124

    PubMed  CAS  Google Scholar 

  • Kukowska-Latello JF, Bielinska AU, Johnson J (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA 93:4897–4902

    Article  Google Scholar 

  • Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  PubMed  CAS  Google Scholar 

  • Lakkaraju A, Dubinsky JM, Low WC et al (2001) Neurons are protected from excitotoxic death by p53 antisense oligonuclotides delivered in anionic liposomes. J Biol Chem 276:32000–32007

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen K, Jaaskelainen I, Syrjanen K et al (1994) Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm Res 11:1127–1131

    Article  PubMed  CAS  Google Scholar 

  • Lee RJ, Huang L (1997) Lipidic vector systems for gene transfer. Crit Rev Ther Drug Carrier Syst 14:173–206

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Williams SKR, Allison SD et al (2001) Analysis of self-assembled cationic lipid–DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem 73:837–8343

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  • Legendre JY, Szoka FC Jr (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 9:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • LeHoux JG, Grondin F (1993) Some effects of chitosan on liver function in the rat. Endocrinology 132:1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Lehrman S (1999) Virus treatment questioned after gene therapy death. Nature 401:517–518

    Article  PubMed  CAS  Google Scholar 

  • Lemkine GF, Demeneix BA (2001) Polyethylenimins for in vivo gene delivery. Curr Opin Mol Ther 3:178–182

    PubMed  CAS  Google Scholar 

  • Lever AML (1996) Gene therapy in the fight against AIDS. Expert Opin Ther Pat 6:161–167

    Article  CAS  Google Scholar 

  • Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516

    PubMed  CAS  Google Scholar 

  • Liebhaber SA (1997) mRNA stability and the control of gene expression. Nucleic Acids Symp Ser 36:29–32

    PubMed  CAS  Google Scholar 

  • Lien Y-HH, Lie L-W (2002) Gene therapy for renal disorders: what are the benefits for the elderly? Drugs Aging 19:553–560

    Article  PubMed  CAS  Google Scholar 

  • Lisziewicz J, Sun D, Klotman M et al (1992) Specific inhibition of human immunodeficiency virus type 1 replication by antisense oligonucleotides: an in vitro model for treatment. Proc Natl Acad Sci USA 89:11209–11213

    Article  PubMed  CAS  Google Scholar 

  • Lisziewicz J, Sun D, Metelev V et al (1993) Long term treatment of human immunodeficiency virus infected cells with antisense oligonucleotide phosphorothioates. Proc Natl Acad Sci USA 90:3860–3864

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Qi H, Huang L et al (1997) Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther 4:517–523

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Lollo CP, Banaszczyk MG, Mullen PM (2002) Poly-L-lysine based gene delivery systems: synthesis, purification, and application. Methods Mol Med 69:1–13

    PubMed  CAS  Google Scholar 

  • Lotze MT, Kost TA (2002) Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther 9:692–699

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein PR, Morrison EE, Bain D (1994) Use of recombinant vectors derived from herpes simplex virus 1 mutant tsK for short-term expression of transgenes encoding cytoplasmic and membrane anchored proteins in post mitotic-polarized cortical neurons and glial cells in vitro. Neuroscience 60:1059–1077

    Article  PubMed  CAS  Google Scholar 

  • Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 30:95–98

    Article  CAS  Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37

    Article  PubMed  CAS  Google Scholar 

  • Maclean AL, Symonds G, Ward R (1997) Immunoliposomes as targeted delivery vehicles for cancer therapeutics. Int J Oncol 11:325–332

    PubMed  CAS  Google Scholar 

  • Macpherson JL, Fly JA, Sun LO et al (1999) Ribozymes in gene therapy of HIV-1. Front Biosci 4:D497–D505

    Article  PubMed  CAS  Google Scholar 

  • Mah C, Byrne BJ, Flotte TR (2002) Virus-based gene delivery systems. Clin Pharmacokinet 41:901–911

    Article  PubMed  CAS  Google Scholar 

  • Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159

    Article  PubMed  CAS  Google Scholar 

  • Mann MJ, Gibbons GH, Hutchinson H (1999a) Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues. Proc Natl Acad Sci USA 96:6411–6416

    Article  PubMed  CAS  Google Scholar 

  • Mann MJ, Whittemore AD, Donaldson MC et al (1999b) Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet 354:1493–1498

    Article  PubMed  CAS  Google Scholar 

  • Marciniak RA, Garcia-Blanco MA, Sharp PA (1990) Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus. Proc Natl Acad Sci USA 87:3624–3638

    Article  PubMed  CAS  Google Scholar 

  • Mardan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54:715–758

    Article  Google Scholar 

  • Marshal J, Yew NS, Eastman SJ et al (1999) Cationic lipid-mediated gene delivery to the airways. In: Wagner E (ed) Nonviral vectors for gene therapy. Academic Press, pp 39–68

    Google Scholar 

  • Martin KR, Klein RL, Quigley HA (2002) Gene delivery to the eye using adeno-associated viral vectors. Methods 28:267–275

    Article  PubMed  CAS  Google Scholar 

  • Martinez MA, Gutierrez A, Armond-Ugon M et al (2002) Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 16:2385–2390

    Article  PubMed  CAS  Google Scholar 

  • McAlister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313

    Article  Google Scholar 

  • McMinus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  Google Scholar 

  • McTaggart S, Al-Rubeai M (2002) Retroviral vectors for human gene delivery. Biotechnol Adv 20:1–31

    Article  PubMed  CAS  Google Scholar 

  • Michou AI, Santoro L, Christ M (1997) Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression. Gene Ther 4:473–482

    Article  PubMed  CAS  Google Scholar 

  • Mirabelli CK, Bennet CF, Anderson K et al (1991) In vitro and in vivo pharmacologic activities of antisense oligonucleotides. Anti-Cancer Drug Des 6:647–661

    CAS  Google Scholar 

  • Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970

    Article  PubMed  CAS  Google Scholar 

  • Mizutani TN, Kato M, Hirota K et al (1995) Inhibition of hepatitis C virus replication by antisense oligonucleotids in culture cells. Biochem Biophys Res Commun 212:906–911

    Article  PubMed  CAS  Google Scholar 

  • Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients mediated by transfer of genetically engineered lymphocytes. Science 314:126–129. http://www.cancer.gov/newscenter/pressreleases/MelanomaGeneTherapy/. 31 Aug 2006

    Google Scholar 

  • Morsy MA, Gu M, Motzel S (1998) An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 95:7866–78671

    Article  PubMed  CAS  Google Scholar 

  • Morvan F, Porumb H, Degols G et al (1993) Comparative evaluation of seven oligonucleotide analogues as potential antisense agents. J Med Chem 36:280–287

    Article  PubMed  CAS  Google Scholar 

  • Mulherkar R (2001) Gene therapy for cancer. Curr Sci 81:555–560

    CAS  Google Scholar 

  • Mumper RJ, Wang J, Klakamp SL (1998) Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. J Control Release 52:191–203

    Article  PubMed  CAS  Google Scholar 

  • Nabel GJ, Nabel EG, Yang ZY (1993) Direct gene transfer with DNA–liposome complexes in melanoma: expression, biological activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 90:11307–11311

    Article  PubMed  CAS  Google Scholar 

  • Nabel GJ, Gordon D, Bishop DK (1996) Immune response in human melanoma after transfer of an allogenic class I major histocompatibility complex gene with DNA–liposome complexes. Proc Natl Acad Sci USA 93:15388–15393

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Devila-Zavala P, Tokuda H (1998) Uptake and gene expression of naked plasmid DNA in cultured brain microvessel endothelial cells. Biochem Biophys Res Commun 245:235–239

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gally P (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  • Naughton BA, Dai Y, Sibanda B (1992) Long-term expression of a retrovirally introduced beta-galactosidase gene in rodent cells implanted in vivo using biodegradable polymer meshes. Somat Cell Mol Genet 18:451–462

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y (1982) Gene transfer into lyoma by electroporation in high electric fields. EMBO J 1:841–845

    PubMed  CAS  Google Scholar 

  • Noone PG, Hohnker KW, Zhou Z (2000) Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol Ther 1:105–114

    Article  PubMed  CAS  Google Scholar 

  • Nyberg-Hoffman C, Aguilar-Cardova E (1999) Instability of adenoviral vectors during transport and its implication for clinical studies. Nat Med 5:955–957

    Article  PubMed  CAS  Google Scholar 

  • Onodera M, Ariga T, Kawamura N (1998) Successful peripheral T-lymphocyte-directed gene transfer for a patient with severe combined immunodeficiency caused by adenosine deaminase deficiency. Blood 91:30–36

    PubMed  CAS  Google Scholar 

  • Otsu M, Candotti F (2002) Gene therapy in infants with severe combined immunodeficiency. BioDrugs 16:229–239

    Article  PubMed  CAS  Google Scholar 

  • Owens RA (2002) Second generation adeno-associated virus type 2-based gene therapy systems with the potential for preferential integration into AAVS 1. Curr Gene Ther 2:145–159

    Article  PubMed  CAS  Google Scholar 

  • Parks RJ, Grahm FL (1997) A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J Virol 71:3293–3298

    PubMed  CAS  Google Scholar 

  • Patil SD, Burgess DJ (2003) DNA-based pharmaceuticals: therapeutics for the 21st century. AAPS Newsmagazine 6:27

    Google Scholar 

  • Patil SD, Rhodes DG (2000a) Conformation of oligodeoxynucleotides associated with anionic liposomes. Nucleic Acids Res 28:4125–4129

    Article  PubMed  CAS  Google Scholar 

  • Patil SD, Rhodes DG (2000b) Influence of divalent cations on the conformation of phosphorothioate oligodeoxynucleotides: a circular dichroism study. Nucleic Acids Res 28:2439–2445

    Article  PubMed  CAS  Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2004) Anionic liposomal delivery system for DNA transfection. AAPS J 6:E29

    Article  PubMed  Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2005) Biophysical characterization of anionic lipoplexes. Biochim Biophys Acta—Biomembranes 7:E61–E77

    CAS  Google Scholar 

  • Pedroso de Lima MC, Simoes S, Pires P et al (2001) Cationic lipid–DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294

    Article  PubMed  CAS  Google Scholar 

  • Perrie Y, Gregoriadis G (2000) Liposome-entrapped plasmid DNA: characterization studies. Biochim Biophys Acta 1475:125–132

    Article  PubMed  CAS  Google Scholar 

  • Reddy JA, Low PS (2000) Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. J Control Release 64:27–37

    Article  PubMed  CAS  Google Scholar 

  • Regnier V, Tahiri A, Andre N et al (2000) Electroporation-mediated delivery of 3′-protected phosphodiester oligodeoxynucleotides to the skin. J Control Release 67:337–346

    Article  PubMed  CAS  Google Scholar 

  • Report (1995) The United Kingdom Health Minister’s Gene Therapy Advisory Committee. Guidance on making proposals to conduct gene therapy research on human subjects. Hum Gene Ther 6:335–346

    Article  Google Scholar 

  • Rizzuto G, Cappelletti M, Maione D (1999) Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 96:6417–6422

    Article  PubMed  CAS  Google Scholar 

  • Roe T, Reynolds TC, Yu G et al (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099–2108

    PubMed  CAS  Google Scholar 

  • Rols MP, Delteil C, Golzio M (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171

    Article  PubMed  CAS  Google Scholar 

  • Rose JA, Berns KI, Hoggan MD (1969) Evidence for a single stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci USA 64:863–869

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Blaese RM, Branner MK et al (2000) Human gene marker/therapy protocols. Hum Gene Ther 11:919–979

    Article  PubMed  CAS  Google Scholar 

  • Ruvkun G (2001) Molecular biology: glimpses of a tiny RNA world. Science 294:797–799

    Article  PubMed  CAS  Google Scholar 

  • Samulski RJ, Chang LS, Shenk T (1989) Helper-stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 63:3822–3828

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Zhu X, Xiao X (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950

    PubMed  CAS  Google Scholar 

  • Scanlon KJ, Ohta Y, Ishida H et al (1995) Oligonucleotide—mediated modulation of mammalian gene expression. FASEB J 9:1288–1296

    PubMed  CAS  Google Scholar 

  • Schatzlein A (2009) Nano-treatment to torpedo cancer. http://news.bbc.co.uk/2/hi/health/7935592.stm/. 10 Mar 2009

  • Scherr M, Morgan MA, Eder M (2003) Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem 10:245–256

    Article  PubMed  CAS  Google Scholar 

  • Schiedner G, Morral N, Parks RJ (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18:180–183

    Article  PubMed  CAS  Google Scholar 

  • Scott M (2007) Dual gene therapy suppresses lung cancer in preclinical test. http://www.newswise.com/p/articles/view/526526/. 11 Jan 2007

  • Shankar P, Manjunath N, Lieberman J (2005) The prospect of silencing disease using RNA interference. J Am Med Assoc 293:1367–1373

    Article  CAS  Google Scholar 

  • Sheridan PL, Bodner M, Lynn A (2000) Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer. Mol Ther 2:262–275

    Article  PubMed  CAS  Google Scholar 

  • Shi N, Zhang Y, Zhu C et al (2001) Brain-specific expression of an exogenous gene after IV administration. Proc Natl Acad Sci USA 98:12754–12759

    Article  PubMed  CAS  Google Scholar 

  • Shinmura K, Morishita R, Aoki M (2000) Catheter-delivered in vivo gene transfer into rat myocardium using the fusigenic liposomal mediated method. Jpn Heart J 41:633–647

    Article  PubMed  CAS  Google Scholar 

  • Simoes S, Slepushkin V, Gaspar R (1998) Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Ther 5:955–964

    Article  PubMed  CAS  Google Scholar 

  • Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34:683–691

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Briones M, Ott G (2000) Cationic microparticles: a potent delivery system for DNA vaccines. Proc Natl Acad Sci USA 97:811–816

    Article  PubMed  CAS  Google Scholar 

  • SoRelle R (2000) Who owns your DNA? Who will own it? Circulation 101:e67–e68

    Article  PubMed  CAS  Google Scholar 

  • Speedie M (2005) Antisense therapeutic agents. In: Williams DA, Lemke TL (eds) Foye’s principles of medicinal chemistry, 5th edn. Lippincott, Philadelphia, PA

    Google Scholar 

  • Stein CA (1998) How to design an antisense oligodeoxynucleotides experiment: a consensus approach. Antisense Nucleic Acid Drug Dev 8:129–132

    Article  PubMed  CAS  Google Scholar 

  • Stewart AK, Lassam NJ, Quirt IC (1999) Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther 6:350–363

    Article  PubMed  CAS  Google Scholar 

  • Stull RA, Szoka FC Jr (1995) Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm Res 12:463–465

    Article  Google Scholar 

  • Sullenger BA, Cech TR (1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262:1566–1569

    Article  PubMed  CAS  Google Scholar 

  • Sullenger BA, Gallardo HF, Ungers GE et al (1990) Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608

    Article  PubMed  CAS  Google Scholar 

  • Sullenger BA, Gallardo HF, Ungers GE et al (1991) Analysis of trans-acting response decoy RNA-mediated inhibition of human immunodeficiency virus type 1 transactivation. J Virol 65:6811–6816

    PubMed  CAS  Google Scholar 

  • Sviridov YV, Zhadanov RI, Podobed OV et al (2001) The LacZ gene transfer into L929 cells and [14 C]-DNA tissue distribution following intraperitoneal administration of new pH-sensitive lipoplexes in mice. Cytobios 106:7–14

    PubMed  CAS  Google Scholar 

  • Sylvia PW (2002) DNA nanoballs boost gene therapy. http://www.newscientist.com/section/science-news/. 12 May 2002

  • Tait DL, Obermiller PS, Hatmaker AR (1999) Ovarian cancer BRCA1 gene therapy: phase I and II trial differences in immune response and vector stability. Clin Cancer Res 5:1708–1714

    PubMed  CAS  Google Scholar 

  • Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4:823–832

    Article  PubMed  CAS  Google Scholar 

  • Tejada-Berges T, Granai CO, Gordinier M et al (2002) Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev Anticancer Ther 2:143–150

    Article  PubMed  CAS  Google Scholar 

  • Tonkinson JL, Stein CA (1993) Antisense nucleic acids-prospects for antiviral intervention. Antiviral Chem Chemother 4:193–199

    CAS  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R et al (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    Article  PubMed  CAS  Google Scholar 

  • Uherek C, Wels W (2000) DNA-carrier proteins for targeted gene delivery. Adv Drug Deliv Rev 44:153–166

    Article  PubMed  CAS  Google Scholar 

  • Usman N, Beigelman L, McSwiggen JA (1996) Hammerhead ribozyme engineering. Curr Opin Struct Biol 1:527–533

    Article  Google Scholar 

  • Van Ginkel FW, Mc Ghee JR, Liu C (1997) Adenoviral gene delivery elicits distinct pulmonary-associated T helper cell responses to the vector and to its transgene. J Immunol 159:685–693

    PubMed  Google Scholar 

  • Van Ommen GJB, Bakker E, Den Dunnen JT (1999) The human genome project and the future of diagnostics, treatment, and prevention. Lancet 354:5–10

    Article  Google Scholar 

  • Venugopalan P, Jain S, Sankar S et al (2002) pH sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects. Pharmazai 57:659–671

    CAS  Google Scholar 

  • Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7:46–59

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa MS, Knoell DL, Young AP (1995) Targeted gene delivery with a low molecular weight glycopeptide carrier. Bioconjug Chem 6:283–291

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Stein U (2000) Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60:249–271

    Article  PubMed  CAS  Google Scholar 

  • Welch PJ, Yei S, Barber JR (1998) Ribozyme gene therapy for hepatitis C virus infection. Clin Diagn Virol 10:163–171

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CJ, Felgner PL, Tsai YJ (1996) A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung. Proc Natl Acad Sci USA 93:11454–11459

    Article  PubMed  CAS  Google Scholar 

  • Wolf JK, Jenkins AD (2002) Gene therapy for ovarian cancer. Int J Oncol 21:461–468

    PubMed  CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Wong IH (2001) Methylation profiling of human cancers in blood: molecular monitoring and prognostication. Int J Oncol 19:1319–1324

    PubMed  CAS  Google Scholar 

  • Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–587

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Huang C-C, Huang W (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1:337–346

    Article  PubMed  CAS  Google Scholar 

  • Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L et al (1998) A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 114:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Jooss KU, Su Q (1996a) Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther 3:137–144

    PubMed  Google Scholar 

  • Yang Y, Su Q, Wilson JM (1996b) Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 70:7209–7212

    PubMed  CAS  Google Scholar 

  • Yi R, YiQ IGM et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotides. Proc Natl Acad Sci USA 75:280–284

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Aronin N (2003) siRNAs knock down hepatitis. Nat Med 9:266–267

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Gasper WA, Stass SA et al (2002) Angiogenic inhibition mediated by a DNAzyme that target vascular endothelial growth factor receptor 2. Cancer Res 62:5463–5469

    PubMed  CAS  Google Scholar 

  • Zhao W, Kobayashi M, Hosokawa M et al (2002) Adenoviral vectors for cancer gene therapy. Curr Genomics 3:163–180

    Article  CAS  Google Scholar 

  • Zhaohui P (2003) China OKs gene therapy drug. Genetic Engineering News 6. http://www.p53therapy.com/news/. 19 Nov 2003

  • Zu Putlitz J, Yu Q, Burke JM et al (1999) Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. J Virol 73:5381–5387

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraswat Pushpendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pushpendra, S., Arvind, P., Anil, B. (2012). Nucleic Acids as Therapeutics. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_2

Download citation

Publish with us

Policies and ethics