Skip to main content

Suppression of Hepatitis C Viral Genome Replication with RNA-Cleaving Deoxyribozyme

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Downregulation of viral genes via oligonucleotide-based gene therapy is a potential strategy for the treatment of virus infection such as hepatitis C. Hepatitis C virus (HCV) is a small-sized, enveloped, positive-sense single-stranded RNA virus. As HCV has highly mutative properties and strong drug resistance, effective antiviral drug for HCV infection is currently unavailable. One of the potential therapeutic strategies for hepatitis C treatment is to cleave HCV RNA genome with proper antisense nucleic acids, thereby inhibiting virus replication in host. RNA-cleaving antisense oligodeoxyribozyme, known as DNAzyme, is an attractive therapeutic oligonucleotide which enables cleavage of mRNA in a sequence-specific manner and thus silencing target gene. In this chapter, we discuss current status of functional antisense oligonucleotides that have been applied to inhibit HCV replication in vitro and in vivo. In particular, the DNAzyme and the DNAzyme conjugated nanoparticle system are discussed in detail to demonstrate a successful usage of functional oligonucleotide and its delivery in vivo for further therapeutic application of functional oligonucleotides in the treatment of hepatitis C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach JC, Chiuman W, Cruz RP et al (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336

    Article  PubMed  CAS  Google Scholar 

  • Agrawal A, Min DH, Singh N et al (2009) Functional delivery of siRNA in mice using dendriworms. ACS Nano 3:2495–2504

    Article  PubMed  CAS  Google Scholar 

  • Alotte C, Martin A, Caldarelli SA et al (2008) Short peptide nucleic acids (PNA) inhibit hepatitis C virus internal ribosome entry site (IRES) dependent translation in vitro. Antiviral Res 80:280–287

    Article  PubMed  CAS  Google Scholar 

  • Alt M, Eisenhardt S, Serwe M et al (1999) Comparative inhibitory potential of differently modified antisense oligodeoxynucleotides on hepatitis C virus translation. Eur J Clin Invest 29:868–876

    Article  PubMed  CAS  Google Scholar 

  • Appaiahgari MB, Vrati S (2007) DNAzyme-mediated inhibition of Japanese encephalitis virus replication in mouse brain. Mol Ther 15:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Bartenschlager R, Ahlborn-Laake L, Mous J et al (1993) Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol 67:3835–3844

    PubMed  CAS  Google Scholar 

  • Bartolome J, Castillo I, Carreno V (2004) Ribozymes as antiviral agents. Minerva Med 95:11–24

    PubMed  CAS  Google Scholar 

  • Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    Article  PubMed  CAS  Google Scholar 

  • Brown AB, Mahmood U, Cortes ML et al (2005) Magnetic resonance imaging and characterization of spontaneous lesions in a transgenic mouse model of tuberous sclerosis as a model for endothelial cell-based transgene delivery. Hum Gene Ther 16:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Brown-Driver V, Eto T, Lesnik E et al (1999) Inhibition of translation of hepatitis C virus RNA by 2-modified antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 9:145–154

    Article  PubMed  CAS  Google Scholar 

  • Bukh J (2004) A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39:1469–1475

    Article  PubMed  CAS  Google Scholar 

  • Choi WH, Choi BR, Kim JH et al (2008) Design and kinetic analysis of hammerhead ribozyme and DNAzyme that specifically cleave TEL-AML1 chimeric mRNA. Biochem Biophys Res Commun 374:169–174

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Lee JY, Suh JS et al (2010) The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31:1429–1443

    Article  PubMed  CAS  Google Scholar 

  • Choo QL, Richman KH, Han JH et al (1991) Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci USA 88:2451–2455

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  PubMed  CAS  Google Scholar 

  • Dass CR (2004) Deoxyribozymes: cleaving a path to clinical trials. Trends Pharmacol Sci 25:395–397

    Article  PubMed  CAS  Google Scholar 

  • Dass CR, Choong PF, Khachigian LM (2008) DNAzyme technology and cancer therapy: cleave and let die. Mol Cancer Ther 7:243–251

    Article  PubMed  CAS  Google Scholar 

  • De Francesco R, Migliaccio G (2005) Challenges and successes in developing new therapies for hepatitis C. Nature 436:953–960

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Tian Y, Lee SH et al (2005) DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem Int Ed 44:3582–3585

    Article  CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  • Derfus AM, Chen AA, Min DH et al (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287

    Article  PubMed  CAS  Google Scholar 

  • El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14

    Article  PubMed  CAS  Google Scholar 

  • Fluiter K, ten Asbroek AL, de Wissel MB et al (2003) In vivo tumour growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res 31:953–962

    Article  PubMed  CAS  Google Scholar 

  • Fluiter K, Frieden M, Vreijling J et al (2005) Evaluation of LNA modified DNAzymes targeting a single nucleotide polymorphism in the large subunit of RNA polymerase II. Oligonucleotides 15:246–254

    Article  PubMed  CAS  Google Scholar 

  • Ge Q, Filip L, Bai A et al (2004) Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 101:8676–8681

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Prigodich AE et al (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073

    Article  PubMed  CAS  Google Scholar 

  • Grakoui A, McCourt DW, Wychowski C et al (1993) A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci USA 90:10583–10587

    Article  PubMed  CAS  Google Scholar 

  • Grzelinski M, Urban-Klein B, Martens T et al (2006) RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther 17:751–766

    Article  PubMed  CAS  Google Scholar 

  • Han M, Gao X, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  PubMed  CAS  Google Scholar 

  • Hanecak R, Brown-Driver V, Fox MC et al (1996) Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J Virol 70:5203–5212

    PubMed  CAS  Google Scholar 

  • Heale BS, Soifer HS, Bowers C et al (2005) siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 33:e30

    Article  PubMed  CAS  Google Scholar 

  • Hijikata M, Mizushima H, Akagi T et al (1993) Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol 67:4665–4675

    PubMed  CAS  Google Scholar 

  • Honda M, Brown EA, Lemon SM (1996) Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2:955–968

    PubMed  CAS  Google Scholar 

  • Honda M, Beard MR, Ping LH et al (1999) A phylogenetically conserved stem-loop structure at the 5′ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol 73:1165–1174

    PubMed  CAS  Google Scholar 

  • Hoofnagle JH (2002) Course and outcome of hepatitis C. Hepatology 36:S21–S29

    Article  PubMed  Google Scholar 

  • Huh YM, Jun YW, Song HT et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387–12391

    Article  PubMed  CAS  Google Scholar 

  • Isaka Y (2007) DNAzymes as potential therapeutic molecules. Curr Opin Mol Ther 9:132–136

    PubMed  CAS  Google Scholar 

  • Jang JT, Nah H, Lee JH et al (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48:1234–1238

    Article  CAS  Google Scholar 

  • Kato N, Hijikata M, Ootsuyama Y et al (1990) Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 87:9524–9528

    Article  PubMed  CAS  Google Scholar 

  • Khoury M, Louis-Plence P, Escriou V et al (2006) Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum 54:1867–1877

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424

    Article  PubMed  CAS  Google Scholar 

  • Labhasetwar V (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 16:674–680

    Article  PubMed  CAS  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  PubMed  CAS  Google Scholar 

  • Laxton C, Brady K, Moschos S et al (2011) Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site. Antimicrob Agents Chemother 55:3105–3114

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Kim KB, Oh S et al (2010) Suppression of hepatitis C virus genome replication in cells with RNA-cleaving DNA enzymes and short-hairpin RNA. Oligonucleotides 20:285–296

    Article  PubMed  CAS  Google Scholar 

  • Lewin AS, Hauswirth WW (2001) Ribozyme gene therapy: applications for molecular medicine. Trends Mol Med 7:221–228

    Article  PubMed  CAS  Google Scholar 

  • Li W, Szoka FC Jr (2007) Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 24:438–449

    Article  PubMed  CAS  Google Scholar 

  • Lima WF, Brown-Driver V, Fox M et al (1997) Combinatorial screening and rational optimization for hybridization to folded hepatitis C virus RNA of oligonucleotides with biological antisense activity. J Biol Chem 272:626–638

    Article  PubMed  CAS  Google Scholar 

  • Lohmann V, Korner F, Dobierzewska A et al (2001) Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75:1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Ye M, Yan GR et al (2005) Effect of EBV LMP1 targeted DNAzymes on cell proliferation and apoptosis. Cancer Gene Ther 12:647–654

    Article  PubMed  CAS  Google Scholar 

  • Ludwig J, Blaschke M, Sproat BS (1998) Extending the cleavage rules for the hammerhead ribozyme: mutating adenosine15.1 to inosine15.1 changes the cleavage site specificity from N16.2U16.1H17 to N16.2C16.1H17. Nucleic Acids Res 26:2279–2285

    Article  PubMed  CAS  Google Scholar 

  • Luo KQ, Chang DC (2004) The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun 318:303–310

    Article  PubMed  CAS  Google Scholar 

  • Manabe S, Fuke I, Tanishita O et al (1994) Production of nonstructural proteins of hepatitis C virus requires a putative viral protease encoded by NS3. Virology 198:636–644

    Article  PubMed  CAS  Google Scholar 

  • Matveeva O, Felden B, Audlin S et al (1997) A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res 25:5010–5016

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey AP, Meuse L, Karimi M et al (2003) A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology 38:503–508

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • McHutchison JG, Fried MW (2003) Current therapy for hepatitis C: pegylated interferon and ribavirin. Clin Liver Dis 7:149–161

    Article  PubMed  Google Scholar 

  • McHutchison JG, Patel K, Pockros P et al (2006) A phase I trial of an antisense inhibitor of hepatitis C virus (ISIS 14803), administered to chronic hepatitis C patients. J Hepatol 44:88–96

    Article  PubMed  CAS  Google Scholar 

  • McMahon KM, Mutharasan RK, Tripathy S et al (2011) Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. Nano Lett 11:1208–1214

    Article  PubMed  CAS  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  • Mizushima H, Hijikata M, Tanji Y et al (1994) Analysis of N-terminal processing of hepatitis C virus nonstructural protein 2. J Virol 68:2731–2734

    PubMed  CAS  Google Scholar 

  • Mizutani T, Kato N, Hirota M et al (1995) Inhibition of hepatitis C virus replication by antisense oligonucleotide in culture cells. Biochem Biophys Res Commun 212:906–911

    Article  PubMed  CAS  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Nelson AR, Borland L, Allbritton NL et al (2007) Myristoyl-based transport of peptides into living cells. Biochemistry 46:14771–14781

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PE (1997) Peptide nucleic acid (PNA) from DNA recognition to antisense and DNA structure. Biophys Chem 68:103–108

    Article  PubMed  CAS  Google Scholar 

  • Oketani M, Asahina Y, Wu CH et al (1999) Inhibition of hepatitis C virus-directed gene expression by a DNA ribonuclease. J Hepatol 31:628–634

    Article  PubMed  CAS  Google Scholar 

  • Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58:467–486

    Article  PubMed  CAS  Google Scholar 

  • Patel PC, Giljohann DA, Daniel WL et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Nielsen CB, Nielsen KE et al (2000) The conformations of locked nucleic acids (LNA). J Mol Recognit 13:44–53

    Article  PubMed  CAS  Google Scholar 

  • Rockwell P, O’Connor WJ, King K et al (1997) Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 94:6523–6528

    Article  PubMed  CAS  Google Scholar 

  • Ryoo SR, Jang H, Kim KS et al (2012) Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials 33: 2754–2761 doi:10.1016/j.biomaterials.2011.12.015

    Google Scholar 

  • Saito G, Swanson JA, Lee KD (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215

    Article  PubMed  CAS  Google Scholar 

  • Santiago FS, Lowe HC, Kavurma MM et al (1999) New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 5:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94:4262–4266

    Article  PubMed  CAS  Google Scholar 

  • Schiffelers RM, Ansari A, Xu J et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149

    Article  PubMed  Google Scholar 

  • Schubert S, Gul DC, Grunert HP et al (2003) RNA cleaving “10-23” DNAzymes with enhanced stability and activity. Nucleic Acids Res 31:5982–5992

    Article  PubMed  CAS  Google Scholar 

  • Schubert S, Grunweller A, Erdmann VA et al (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893

    Article  PubMed  CAS  Google Scholar 

  • Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine–part 1. Nanomedicine 6:516–522

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Honda Y (1995) Phosphorothioate antisense oligodeoxynucleotides capable of inhibiting hepatitis C virus gene expression: in vitro translation assay. J Biochem 118:1199–1204

    PubMed  CAS  Google Scholar 

  • Shepherd J, Waugh N, Hewitson P (2000) Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review. Health Technol Assess 4:1–67

    PubMed  CAS  Google Scholar 

  • Shippy R, Lockner R, Farnsworth M et al (1999) The hairpin ribozyme. Discovery, mechanism, and development for gene therapy. Mol Biotechnol 12:117–129

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63

    Article  PubMed  CAS  Google Scholar 

  • Song E, Zhu P, Lee SK et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    Article  PubMed  CAS  Google Scholar 

  • Steele D, Kertsburg A, Soukup GA (2003) Engineered catalytic RNA and DNA: new biochemical tools for drug discovery and design. Am J Pharmacogenomics 3:131–144

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa A, Mori C, Fuke I et al (1991) Structure and organization of the hepatitis C virus genome isolated from human carriers. J Virol 65:1105–1113

    PubMed  CAS  Google Scholar 

  • Tallet-Lopez B, Aldaz-Carroll L, Chabas S et al (2003) Antisense oligonucleotides targeted to the domain IIId of the hepatitis C virus IRES compete with 40S ribosomal subunit binding and prevent in vitro translation. Nucleic Acids Res 31:734–742

    Article  PubMed  CAS  Google Scholar 

  • Tomei L, Failla C, Santolini E et al (1993) NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J Virol 67:4017–4026

    PubMed  CAS  Google Scholar 

  • Trepanier J, Tanner JE, Momparler RL et al (2006) Cleavage of intracellular hepatitis C RNA in the virus core protein coding region by deoxyribozymes. J Viral Hepat 13:131–138

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama-Kohara K, Iizuka N, Kohara M et al (1992) Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483

    PubMed  CAS  Google Scholar 

  • Vester B, Lundberg LB, Sorensen MD et al (2002) LNAzymes: incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage. J Am Chem Soc 124:13682–13683

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 97:5633–5638

    Article  PubMed  CAS  Google Scholar 

  • Wakita T, Wands JR (1994) Specific inhibition of hepatitis C virus expression by antisense oligodeoxynucleotides. In vitro model for selection of target sequence. J Biol Chem 269:14205–14210

    PubMed  CAS  Google Scholar 

  • Walker MP, Appleby TC, Zhong W et al (2003) Hepatitis C virus therapies: current treatments, targets and future perspectives. Antivir Chem Chemother 14:1–21

    PubMed  CAS  Google Scholar 

  • Westerhout EM, Berkhout B (2007) A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 35:4322–4330

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Yu L, McMahon R et al (1999) Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther 10:2847–2857

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Rao J (2008) Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark 4:307–319

    PubMed  CAS  Google Scholar 

  • Yao ZQ, Zhou YX, Feng XM et al (1995) Specific inhibition of hepatitis b virus gene expression by an antisense oligonucleotide in vitro. Acta Virol 39:227–230

    PubMed  CAS  Google Scholar 

  • Zein NN (2000) Clinical significance of hepatitis C virus genotypes. Clin Microbiol Rev 13:223–235

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hanecak R, Brown-Driver V et al (1999) Antisense oligonucleotide inhibition of hepatitis C virus (HCV) gene expression in livers of mice infected with an HCV-vaccinia virus recombinant. Antimicrob Agents Chemother 43:347–353

    PubMed  CAS  Google Scholar 

  • Zhao W, Gao Y, Kandadai SA et al (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed 45:2409–2413

    Article  CAS  Google Scholar 

  • Zhu Q, Oei Y, Mendel DB et al (2006) Novel robust hepatitis C virus mouse efficacy model. Antimicrob Agents Chemother 50:3260–3268

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NRF grants (2010-0019306, 2011-0016385) and the WCU project (R33-10128) funded by the MEST, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Eun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Min, DH., Kim, DE. (2012). Suppression of Hepatitis C Viral Genome Replication with RNA-Cleaving Deoxyribozyme. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_17

Download citation

Publish with us

Policies and ethics