Skip to main content

Ribozymes as Molecular Biology Reagents

  • Chapter
  • First Online:
Book cover From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1795 Accesses

Abstract

Catalytic RNA molecules (ribozymes) can catalyze a number of biochemical processes, including tRNA processing, mRNA splicing and regulation, and of course peptide bond formation. While many of these reactions involve phosphodiester bond rearrangement, catalysts selected by directed evolution further expand the range of reactions available to ribozymes to include the formation of carbon–carbon bonds and redox reactions. This chapter reviews the adaptation of ribozymes into unique as well as alternative tools for (1) developing biosensors and reporters, (2) manipulation of target RNA, and (3) biocatalysis of non-phosphoryltransfer reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agop-Nersesian C, Pfahler J, Lanzer M et al (2008) Functional expression of ribozymes in Apicomplexa: towards exogenous control of gene expression by inducible RNA-cleavage. Int J Parasitol 38:673–681

    PubMed  CAS  Google Scholar 

  • Amontov S, Jäschke A (2006) Controlling the rate of organic reactions: rational design of allosteric Diels-Alderase ribozymes. Nucleic Acids Res 34:5032–5038

    PubMed  Google Scholar 

  • Atsumi S, Ikawa Y, Shiraishi H et al (2001) Design and development of a catalytic ribonucleoprotein. EMBO J 20:5453–5460

    PubMed  CAS  Google Scholar 

  • Ausländer S, Ketzer P, Hartig JS (2010) A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol Biosyst 6:807–814

    PubMed  Google Scholar 

  • Bagby SC, Bergman NH, Shechner DM et al (2009) A class I ligase ribozyme with reduced Mg2+ dependence: selection, sequence analysis, and identification of functional tertiary interactions. RNA 15:2129–2146

    PubMed  CAS  Google Scholar 

  • Bai Y, Gong H, Li H et al (2011) Oral delivery of RNase P ribozymes by Salmonella inhibits viral infection in mice. Proc Natl Acad Sci USA 108:3222–3227

    PubMed  CAS  Google Scholar 

  • Baker KE, Parker R (2006) Conventional 3′ end formation is not required for NMD substrate recognition in Saccharomyces cerevisiae. RNA 12:1441–1445

    PubMed  CAS  Google Scholar 

  • Baskerville S, Bartel DP (2002) A ribozyme that ligates RNA to protein. Proc Natl Acad Sci USA 99:9154–9159

    PubMed  CAS  Google Scholar 

  • Batey RT, Kieft JS (2007) Improved native affinity purification of RNA. RNA 13:1384–1389

    PubMed  CAS  Google Scholar 

  • Bergeron LJ, Perreault J-P (2005) Target-dependent on/off switch increases ribozyme fidelity. Nucleic Acids Res 33:41240–41248

    Google Scholar 

  • Biondi E, Nickens DG, Warren S et al (2010) Convergent donor and acceptor substrate utilization among kinase ribozymes. Nucleic Acids Res 38:6785–6795

    PubMed  CAS  Google Scholar 

  • Blount K, Puskarz I, Penchovsky R et al (2006) Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol 3:77–81

    PubMed  CAS  Google Scholar 

  • Carter JR, Keith JH, Barde PV et al (2010) Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns. BMC Mol Biol 11:84

    PubMed  Google Scholar 

  • Celesnik H, Deana A, Belasco JG (2007) Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Mol Cell 27:79–90

    PubMed  CAS  Google Scholar 

  • Chen X, Ellington AD (2009) Design principles for ligand-sensing, conformation-switching ribozymes. PLoS Comput Biol 5:e1000620

    PubMed  Google Scholar 

  • Chen X, Denison L, Levy M et al (2009) Direct selection for ribozyme cleavage activity in cells. RNA 15:2035–2045

    PubMed  CAS  Google Scholar 

  • Chen YY, Jensen MC, Smolke CD (2010) Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci USA 107:8531–8536

    PubMed  CAS  Google Scholar 

  • Cheng X, Ko J-H, Altman S (2011) Inactivation of expression of two genes in Saccharomyces cerevisiae with the external guide sequence methodology. RNA 17:544–549

    PubMed  CAS  Google Scholar 

  • Cho B, Burke DH (2006) Topological rearrangement yields structural stabilization and interhelical distance constraints in the Kin.46 self-phosphorylating ribozyme. RNA 12:2118–2125

    PubMed  CAS  Google Scholar 

  • Coleman TM, Huang F (2002) RNA-catalyzed thioester synthesis. Chem Biol 9:1227–1236

    PubMed  CAS  Google Scholar 

  • Cui Z, Sun L, Zhang B (2004) A peptidyl transferase ribozyme capable of combinatorial peptide synthesis. Bioorg Med Chem 12:927–933

    PubMed  CAS  Google Scholar 

  • Dallas A, Balatskaya SV, Kuo T-C et al (2008) Hairpin ribozyme-antisense RNA constructs can act as molecular Lassos. Nucleic Acids Res 36:6752–6766

    PubMed  CAS  Google Scholar 

  • de Wit E, Spronken MIJ, Vervaet G et al (2007) A reverse-genetics system for Influenza A virus using T7 RNA polymerase. J Gen Virol 88:1281–1287

    PubMed  Google Scholar 

  • Di Tomasso G, Lampron P, Dagenais P et al (2011) The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions. Nucleic Acids Res 39:e18

    PubMed  Google Scholar 

  • Dotson PP 2nd, Frommeyer KN, Testa SM (2008) Ribozyme mediated trans insertion-splicing of modified oligonucleotides into RNA. Arch Biochem Biophys 478:81–84

    PubMed  CAS  Google Scholar 

  • Drude I, VaulĂ©on S, MĂĽller S (2007) Twin ribozyme mediated removal of nucleotides from an internal RNA site. Biochem Biophys Res Commun 363:24–29

    PubMed  CAS  Google Scholar 

  • Duane Smith M, Collins RA (2011) Use of ribozyme cleavage kinetics to measure salt-induced changes in solution pH. Anal Biochem 415:12–20

    PubMed  Google Scholar 

  • Duss O, Maris C, von Schroetter C et al (2010) A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Res 38:e188

    PubMed  Google Scholar 

  • Eaton B, Tarasow TM, Nieuwlandt D, Dewey T (2007) Antibiotic compounds. US 7179907

    Google Scholar 

  • Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    PubMed  CAS  Google Scholar 

  • Ferguson A, Boomer RM, Kurz M et al (2004) A novel strategy for selection of allosteric ribozymes yields RiboReporterTM sensors for caffeine and aspartame. Nucleic Acids Res 32:1756–1766

    PubMed  CAS  Google Scholar 

  • Fiola K, Perreault J-P, Cousineau B (2006) Gene targeting in the Gram-Positive bacterium Lactococcus lactis, using various delta ribozymes. Appl Environ Microbiol 72:869–879

    PubMed  CAS  Google Scholar 

  • Fiskaa T, Lundblad EW, Henriksen JR et al (2006) RNA reprogramming of alpha-mannosidase mRNA sequences in vitro by myxomycete group IC1 and IE ribozymes. FEBS J 273:2789–2800

    PubMed  CAS  Google Scholar 

  • Fong N, Ohman M, Bentley DL (2009) Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing. Nat Struct Mol Biol 16:916–922

    PubMed  CAS  Google Scholar 

  • Frauendorf C, Jäschke A (2001) Detection of small organic analytes by fluorescing molecular switches. Bioorg Med Chem 9:2521–2524

    PubMed  CAS  Google Scholar 

  • Fujita Y, Furuta H, Ikawa Y (2009) Tailoring RNA modular units on a common scaffold: a modular ribozyme with a catalytic unit for beta-nicotinamide mononucleotide-activated RNA ligation. RNA 15:877–888

    PubMed  CAS  Google Scholar 

  • Furchak JRW, Yang P, Jennings C et al (2008) Assay for glucosamine 6-phosphate using a ligand-activated ribozyme with fluorescence resonance energy transfer or CE-laser-induced fluorescence detection. Anal Chem 80:8195–8201

    PubMed  CAS  Google Scholar 

  • Fusz S, EisenfĂĽhr A, Srivatsan SG et al (2005) A ribozyme for the aldol reaction. Chem Biol 12:941–950

    PubMed  CAS  Google Scholar 

  • Goto Y, Suga H (2009) Translation initiation with initiator tRNA charged with exotic peptides. J Am Chem Soc 131:5040–5041

    PubMed  CAS  Google Scholar 

  • Goto Y, Ohta A, Sako Y et al (2008) Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem Biol 3:120–129

    PubMed  CAS  Google Scholar 

  • Gromak N, Talotti G, Proudfoot NJ et al (2008) Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. RNA 14:359–366

    PubMed  CAS  Google Scholar 

  • Hall B, Hesselberth JR, Ellington AD (2007) Computational selection of nucleic acid biosensors via a slip structure model. Biosens Bioelectron 22:1939–1947

    PubMed  CAS  Google Scholar 

  • Hartig JS, Famulok M (2008) Screening of molecular interactions using reporter hammerhead ribozymes. Methods Mol Biol 429:251–263

    PubMed  CAS  Google Scholar 

  • Hartig JS, Najafi-Shoushtari SH, Grune I et al (2002) Protein-dependent ribozymes report molecular interactions in real time. Nature 20:717–722

    CAS  Google Scholar 

  • Hartig JS, GrĂĽne I, Najafi-Shoushtari SH et al (2004) Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. J Am Chem Soc 126:722–723

    PubMed  CAS  Google Scholar 

  • Hasegawa S, Gowrishankar G, Rao J (2006) Detection of mRNA in mammalian cells with a split ribozyme reporter. Chembiochem 7:925–928

    PubMed  CAS  Google Scholar 

  • Hayden EJ, Riley CA, Burton AS et al (2005) RNA-directed construction of structurally complex and active ligase ribozymes through recombination. RNA 11:1678–1687

    PubMed  CAS  Google Scholar 

  • Hesselberth JR, Robertson MP, Knudsen SM et al (2003) Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal Biochem 312:106–112

    PubMed  CAS  Google Scholar 

  • Hong S-H, Jeong J-S, Lee Y-J et al (2007) Molecular imaging of endogenous mRNA expression in a mouse tumor model by adenovirus harboring trans-splicing ribozyme. FEBS Lett 581:5396–5400

    PubMed  CAS  Google Scholar 

  • Huang F, Yarus M (1997a) 5′-RNA self-capping from guanosine diphosphate. Biochemistry 36:6557–6563

    PubMed  CAS  Google Scholar 

  • Huang F, Yarus M (1997b) Versatile 5′ phosphoryl coupling of small and large molecules to an RNA. Proc Natl Acad Sci USA 94:8965–8969

    PubMed  CAS  Google Scholar 

  • Huang F, Yang Z, Yarus M (1998) RNA enzymes with two small-molecule substrates. Chem Biol 5:669–678

    PubMed  CAS  Google Scholar 

  • Huang F, Bugg CW, Yarus M (2000) RNA-catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry 39:15548–15555

    PubMed  CAS  Google Scholar 

  • Jenne A, Famulok M (1998) A novel ribozyme with ester transferase activity. Chem Biol 5:23–34

    PubMed  CAS  Google Scholar 

  • Johnson AK, Sinha J, Testa SM (2005) Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs. Biochemistry 44:10702–10710

    PubMed  CAS  Google Scholar 

  • Jones JP 3rd, Kierlin MN, Coon RG et al (2005) Retargeting mobile group II introns to repair mutant genes. Mol Ther 11:687–694

    PubMed  CAS  Google Scholar 

  • Jose AM, Soukup GA, Breaker RR (2001) Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res 29:1631–1637

    PubMed  CAS  Google Scholar 

  • Jung H-S, Lee S-W (2006) Ribozyme-mediated selective killing of cancer cells expressing carcinoembryonic antigen RNA by targeted trans-splicing. Biochem Biophys Res Commun 349:556–563

    PubMed  CAS  Google Scholar 

  • Kang TJ, Suga H (2007) In vitro selection of a 5′-purine nucleotide transferase ribozyme. Nucleic Acids Symp Ser 51:379–380

    Google Scholar 

  • Kawakami J, Maiya C, Sugimoto N (2006) Functional role of the cofactor on activation process of l-histidine dependent ribozyme. Nucleic Acids Symp Ser 50:241–242

    Google Scholar 

  • Kawakami T, Murakami H, Suga H (2008) Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem Biol 15:32–42

    PubMed  CAS  Google Scholar 

  • Kawakami T, Ohta A, Ohuchi M et al (2009) Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol 5:888–890

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Taira K (2002) A functional gene discovery in the Fas-mediated pathway to apoptosis by analysis of transiently expressed randomized hybrid-ribozyme libraries. Nucleic Acids Res 30:3609–3614

    PubMed  CAS  Google Scholar 

  • Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes. Methods 34:408–414

    PubMed  CAS  Google Scholar 

  • Kim DE, Joyce GF (2004) Cross-Catalytic Replication of an RNA Ligase Ribozyme. Chem Biol 11:1505–1512

    PubMed  CAS  Google Scholar 

  • Kim DS, Gusti V, Pillai SG et al (2005) An artificial riboswitch for controlling pre-mRNA splicing. RNA 11:1667–1677

    PubMed  CAS  Google Scholar 

  • Knudsen SM, Lee J, Ellington AD et al (2006) Ribozyme-mediated signal augmentation on a mass-sensitive biosensor. J Am Chem Soc 128:15936–15937

    PubMed  CAS  Google Scholar 

  • Kumar D, An C-I, Yokobayashi Y (2009) Conditional RNA interference mediated by allosteric ribozyme. J Am Chem Soc 131:13906–13907

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Tanabe T, Warashina M et al (2001) Allosterically controllable maxizyme-mediated suppression of progression of leukemia in mice. Biomacromolecules 2:1220–1228

    PubMed  CAS  Google Scholar 

  • Lacadie SA, Tardiff DF, Kadener S et al (2006) In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 20:2055–2066

    PubMed  CAS  Google Scholar 

  • Lam BJ, Joyce GF (2009) Autocatalytic aptazymes enable ligand-dependent exponential amplification of RNA. Nat Biotechnol 27:288–292

    PubMed  CAS  Google Scholar 

  • Lan N, Howrey RP, Lee S et al (1998) Ribozyme-mediated repair of sickle β-globin mRNAs in erythrocyte precursors. Science 280:1593–1596

    PubMed  CAS  Google Scholar 

  • Lau MWL, Unrau PJ (2009) A promiscuous ribozyme promotes nucleotide synthesis in addition to ribose chemistry. Chem Biol 16:815–825

    PubMed  CAS  Google Scholar 

  • Lau MW, Cadieux KE, Unrau PJ (2004) Isolation of fast purine nucleotide synthase ribozymes. J Am Chem Soc 126:15686–15693

    PubMed  CAS  Google Scholar 

  • Lee N, Bessho Y, Wei K et al (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol 7:28–33

    PubMed  CAS  Google Scholar 

  • Lee H-W, Robinson SG, Bandyopadhyay S et al (2007) Reversible photo-regulation of a hammerhead ribozyme using a diffusible effector. J Mol Biol 371:1163–1173

    PubMed  CAS  Google Scholar 

  • Li M, Li H, Rossi JJ (2006) RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann NY Acad Sci 1082:172–179

    PubMed  CAS  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    PubMed  CAS  Google Scholar 

  • Meaux S, Van Hoof A (2006) Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay. RNA 12:1323–1337

    PubMed  CAS  Google Scholar 

  • Mitsuyasu RT, Merigan TC, Carr A et al (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 15:285–292

    PubMed  CAS  Google Scholar 

  • Moshiri H, Salavati R (2010) A fluorescence-based reporter substrate for monitoring RNA editing in trypanosomatid pathogens. Nucleic Acids Res 38:e138

    PubMed  Google Scholar 

  • Mueller D, Stahl U, Meyer V (2006) Application of hammerhead ribozymes in filamentous fungi. J Microbiol Methods 65:585–595

    PubMed  CAS  Google Scholar 

  • Murakami H, Saito H, Suga H (2003) A versatile tRNA aminoacylation catalyst based on RNA. Chem Biol 10:655–662

    PubMed  CAS  Google Scholar 

  • Murakami H, Ohta A, Goto Y et al (2006) Flexizyme as a versatile tRNA acylation catalyst and the application for translation. Nucleic Acids Symp Ser 50:35–36

    Google Scholar 

  • Najafi-Shoushtari SH, Famulok M (2005) Competitive regulation of modular allosteric aptazymes by a small molecule and oligonucleotide effector. RNA 11:1514–1520

    PubMed  CAS  Google Scholar 

  • Najafi-Shoushtari SH, Famulok M (2007) DNA aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin. Blood Cells Mol Dis 38:19–24

    PubMed  CAS  Google Scholar 

  • Nandasoma U, McCormick C, Griffin S et al (2011) Nucleotide requirements at positions +1 to +4 for the initiation of hepatitis C virus positive-strand RNA synthesis. J Gen Virol 92:1082–1086

    PubMed  CAS  Google Scholar 

  • Nierth A, Singer M, Jäschke A (2010) Efficient photoactivation of a Diels-Alderase ribozyme. Chem Commun 46:7975–7977

    CAS  Google Scholar 

  • Nieuwlandt D, West M, Cheng X et al (2003) The first example of an RNA urea synthase: selection through the enzyme active site of human neutrophile elastase. Chembiochem 4:651–654

    PubMed  CAS  Google Scholar 

  • Ohta A, Murakami H, Higashimura E et al (2007) Synthesis of polyester by means of genetic code reprogramming. Chem Biol 14:1315–1322

    PubMed  CAS  Google Scholar 

  • Ohuchi M, Murakami H, Suga H (2007) In situ generation of aminoacyl-tRNAs assisted by ribozymes in translation apparatus. Nucleic Acids Symp Ser 51:115–116

    Google Scholar 

  • Paul N, Joyce GF (2002) A self-replicating ligase ribozyme. Proc Natl Acad Sci USA 99:12733–12740

    PubMed  CAS  Google Scholar 

  • Pawlicki JM, Steitz JA (2009) Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci. Cell Cycle 8:345–356

    PubMed  CAS  Google Scholar 

  • Pei D-S, Sun Y-H, Long Y et al (2008) Inhibition of no tail (ntl) gene expression in zebrafish by external guide sequence (EGS) technique. Mol Biol Rep 35:139–143

    PubMed  CAS  Google Scholar 

  • Penchovsky R, Breaker RR (2005) Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat Biotechnol 23:1424–1433

    PubMed  CAS  Google Scholar 

  • Pereira MJB, Behera V, Walter NG (2010) Nondenaturing purification of co-transcriptionally folded RNA avoids common folding heterogeneity. PLoS One 5:e12953

    PubMed  Google Scholar 

  • Prenninger S, Schroeder R, Semrad K (2006) Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap. Nat Protoc 1:1273–1277

    PubMed  Google Scholar 

  • Rackham O, Chin JW (2005) A network of orthogonal ribosome x mRNA pairs. Nat Chem Biol 1:159–166

    PubMed  CAS  Google Scholar 

  • Robertson MP, Ellington AD (1999) In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotechnol 17:62–66

    PubMed  CAS  Google Scholar 

  • Robertson MP, Ellington AD (2001) In vitro selection of nucleoprotein enzymes. Nat Biotechnol 19:650–655

    PubMed  CAS  Google Scholar 

  • Röhrig CH, Retz OA, Meergans T et al (2004) In vitro non-natural amino acid mutagenesis using a suppressor tRNA generated by the cis-acting hepatitis delta virus ribozyme. Biochem Biophys Res Commun 325:731–738

    PubMed  Google Scholar 

  • Saran D, Nickens DG, Burke DH (2005) A trans acting ribozyme that phosphorylates exogenous RNA. Biochemistry 44:15007–15016

    PubMed  CAS  Google Scholar 

  • Saran D, Held DM, Burke DH (2006) Multiple-turnover thio-ATP hydrolase and phospho-enzyme intermediate formation activities catalyzed by an RNA enzyme. Nucleic Acids Res 34:3201–3208

    PubMed  CAS  Google Scholar 

  • Seelig B, Jäschke A (1999) A small catalytic RNA motif with Diels-Alderase activity. Chem Biol 6:167–176

    PubMed  CAS  Google Scholar 

  • Seetharaman S, Zivarts M, Sudarsan N et al (2001) Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat Biotechnol 19:336–341

    PubMed  CAS  Google Scholar 

  • Sengle G, EisenfĂĽh A, Arora PS et al (2001) Novel RNA catalysts for the Michael reaction. Chem Biol 8:459–473

    PubMed  CAS  Google Scholar 

  • Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    PubMed  CAS  Google Scholar 

  • So M-K, Gowrishankar G, Hasegawa S et al (2008) Imaging target mRNA and siRNA-mediated gene silencing in vivo with ribozyme-based reporters. Chembiochem 9:2682–2691

    PubMed  CAS  Google Scholar 

  • Song M-S, Jeong J-S, Ban G et al (2009) Validation of tissue-specific promoter-driven tumor-targeting trans-splicing ribozyme system as a multifunctional cancer gene therapy device in vivo. Cancer Gene Ther 16:113–125

    PubMed  CAS  Google Scholar 

  • Srinivasan J, Cload ST, Hamaguchi N et al (2004) ADP-Specific Sensors Enable Universal Assay of Protein Kinase Activity. Chem Biol 11:499–508

    PubMed  CAS  Google Scholar 

  • Strohbach D, Novak N, MĂĽller S (2006) Redox-active riboswitching: allosteric regulation of ribozyme activity by ligand-shape control. Angew Chem Int Ed Engl 45:2127–2129

    PubMed  CAS  Google Scholar 

  • Sudarsan N, Cohen-Chalamish S, Nakamura S et al (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 12:1325–1335

    PubMed  CAS  Google Scholar 

  • Sun L, Cui Z, Li C et al (2007) Ribozyme-catalyzed dipeptide synthesis in monovalent metal ions alone. Biochemistry 46:3714–3723

    PubMed  CAS  Google Scholar 

  • Suryawanshi H, Scaria V, Maiti S (2010) Modulation of microRNA function by synthetic ribozymes. Mol Biosyst 6:1807–1809

    PubMed  CAS  Google Scholar 

  • Suyama E, Kawasaki H, Nakajima M et al (2003) Identification of genes involved in cell invasion by using a library of randomized hybrid ribozymes. Proc Natl Acad Sci USA 100:5616–5621

    PubMed  CAS  Google Scholar 

  • Tijerina P, Bhaskaran H, Russell R (2006) Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Proc Natl Acad Sci USA 103:16698–16703

    PubMed  CAS  Google Scholar 

  • Topp S, Gallivan JP (2010) Emerging applications of riboswitches in chemical biology. ACS Chem Biol 5:139–148

    PubMed  CAS  Google Scholar 

  • Tsukiji S, Pattnaik SB, Suga H (2003) An alcohol dehydrogenase ribozyme. Nat Struct Biol 10:713–717

    PubMed  CAS  Google Scholar 

  • Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci USA 107:4585–4589

    PubMed  CAS  Google Scholar 

  • Unrau PJ, Bartel DP (1998) RNA-catalysed nucleotide synthesis. Nature 395:260–263

    PubMed  CAS  Google Scholar 

  • Vaish NK, Dong F, Andrews L et al (2002) Monitoring post-translational modification of proteins with allosteric ribozymes. Nat Biotechnol 20:810–815

    PubMed  CAS  Google Scholar 

  • Vaish NK, Jadhav VR, Kossen K et al (2003) Zeptomole detection of a viral nucleic acid using a target-activated ribozyme. RNA 9:1058–1072

    PubMed  CAS  Google Scholar 

  • Vicens Q, Cech TR (2009) A natural ribozyme with 3′,5′ RNA ligase activity. Nat Chem Biol 5:97–99

    PubMed  CAS  Google Scholar 

  • Wachter A (2010) Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol 7:67–76

    PubMed  CAS  Google Scholar 

  • Watanabe T, Sullenger BA (2000) Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc Natl Acad Sci USA 97:8490–8494

    PubMed  CAS  Google Scholar 

  • Watson PY, Fedor MJ (2009) Determination of intracellular RNA folding rates using self-cleaving RNAs. Meth Enzymol 468:259–286

    PubMed  CAS  Google Scholar 

  • Welz R, Bossmann K, Klug C et al (2003) Site-directed alteration of RNA sequence mediated by an engineered twin ribozyme. Angew Chem Int Ed Engl 42:2424–2427

    PubMed  CAS  Google Scholar 

  • Wieland M, Hartig JS (2006) Turning inhibitors into activators: a hammerhead ribozyme controlled by a guanine quadruplex. Angew Chem Int Ed Engl 45:5875–5878

    PubMed  CAS  Google Scholar 

  • Wieland M, Berschneider B, Erlacher MD et al (2010) Aptazyme-mediated regulation of 16S ribosomal RNA. Chem Biol 17:236–242

    PubMed  CAS  Google Scholar 

  • Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA 104:14283–14288

    PubMed  CAS  Google Scholar 

  • Wochner A, Attwater J, Coulson A et al (2011) Ribozyme-catalyzed transcription of an active ribozyme. Science 332:209–212

    PubMed  CAS  Google Scholar 

  • Wong TN, Pan T (2009) RNA folding during transcription: protocols and studies. Meth Enzymol 468:167–193

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Tan L, Mayer G et al (2007) Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance. Chem Biol 14:804–812

    PubMed  CAS  Google Scholar 

  • Yao J, Zhong J, Lambowitz AM (2005) Gene targeting using randomly inserted group II introns (targetrons) recovered from an Escherichia coli gene disruption library. Nucleic Acids Res 33:3351–3362

    PubMed  CAS  Google Scholar 

  • Yao F, Murakami N, Bleiziffer O et al (2010) Development of a regulatable oncolytic herpes simplex virus type 1 recombinant virus for tumor therapy. J Virol 84:8163–8171

    PubMed  CAS  Google Scholar 

  • Yen L, Svendsen J, Lee J-S et al (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431:471–476

    PubMed  CAS  Google Scholar 

  • Yen L, Magnier M, Weissleder R et al (2006) Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. RNA 12:797–806

    PubMed  CAS  Google Scholar 

  • Young DD, Garner RA, Yoder JA et al (2009) Light-activation of gene function in mammalian cells via ribozymes. Chem Commun 5:568–570

    Google Scholar 

  • Zaher HS, Unrau PJ (2007) Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA 13:1017–1026

    PubMed  CAS  Google Scholar 

  • Zaher HS, Watkins RA, Unrau PJ (2006) Two independently selected capping ribozymes share similar substrate requirements. RNA 12:1949–1958

    PubMed  CAS  Google Scholar 

  • Zivarts M, Liu Y, Breaker RR (2005) Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res 33:622–631

    PubMed  CAS  Google Scholar 

  • Zou H, Lee J, Umamoto S et al (2003) Engineered RNase P ribozymes are efficient in cleaving a human cytomegalovirus mRNA in vitro and are effective in inhibiting viral gene expression and growth in human cells. J Biol Chem 278:37265–37274

    PubMed  CAS  Google Scholar 

  • Zúñiga S, Sola I, Moreno JL et al (2007) Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357:215–227

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Environmental Protection Agency (D5774-G1), the National Security Science and Engineering Faculty Fellowship (FA9550-10-1-0169), and the Welch Foundation (F-1654). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the sponsors. The authors would also like to acknowledge Dr. Angel Syrett for editing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ellington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhadra, S., Pothukuchy, A., Ellington, A. (2012). Ribozymes as Molecular Biology Reagents. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_12

Download citation

Publish with us

Policies and ethics